Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2-23=0\)
\(\Leftrightarrow5x^2=23\)
\(\Leftrightarrow x^2=\frac{23}{5}=4,6\)
\(\Rightarrow\left[\begin{matrix}x=\sqrt{4,6}\\x=-\sqrt{4,6}\end{matrix}\right.\)
\(a.\) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\) \(\left(1\right)\)
Đặt \(t=x^2+1\) , khi đó phương trình \(\left(1\right)\) trở thành:
\(t^2+3xt+2x^2=0\)
\(\Leftrightarrow\) \(\left(t+x\right)\left(t+2x\right)=0\)
\(\Leftrightarrow\) \(^{t+x=0}_{t+2x=0}\)
\(\text{*}\) \(t+x=0\)
\(\Leftrightarrow\) \(x^2+x+1=0\)
Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\) với mọi \(x\) nên phương trình vô nghiệm
\(\text{*}\) \(t+2x=0\)
\(\Leftrightarrow\) \(x^2+2x+1=0\)
\(\Leftrightarrow\) \(\left(x+1\right)^2=0\)
\(\Leftrightarrow\) \(x+1=0\)
\(\Leftrightarrow\) \(x=-1\)
Vậy, tập nghiệm của pt là \(S=\left\{-1\right\}\)
\(b.\) \(\left(x^2-9\right)^2=12x+1\)
\(\Leftrightarrow\) \(x^4-18x^2+81-12x-1=0\)
\(\Leftrightarrow\) \(x^4-18x^2-12x+80=0\)
\(\Leftrightarrow\) \(x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)
\(\Leftrightarrow\) \(x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)
Vì \(x^2+6x+10=\left(x+3\right)^2+1\ne0\) với mọi \(x\)
\(\Rightarrow\) \(\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\) \(^{x_1=2}_{x_2=4}\)
Vậy, phương trình đã cho có các nghiệm \(x_1=2;\) \(x_2=4\)
(x+1)2-(x+1)=0
<=> (x+1)2 hoặc x+1=0
(x+1)2=0 => x=-1
x+1=0 => x=-1
Vậy x=-1
b) 5x2-13x=0
x(5x-13)=0
<=> x=0 hoặc 5x-13=0
5x-13=0 => 5x=13 => x=13/5
Vậy x=13/5
c) x2-7x3=0
<=> x(x-7x2)=0
=> x=0 hoặc
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-161}{23}=10\)
<=>\(\dfrac{x-241}{17}-1+\dfrac{x-220}{19}-2+\dfrac{x-195}{21}-3\dfrac{x-161}{23}-4=0\)
<=>\(\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-158}{21}+\dfrac{x-158}{23}=0\)
<=>\(\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
vì 1/17+1/19+1/21+1/23 khcas 0
=>x-258=0<=>x=258
vậy...............
chcus bạn học tốt ^^
\(x^2-4-\left(x+5\right)\left(2-x\right)=0\)
\(2x^2-14+3x=0\)
\(2x^2+3x-14=0\)
\(\Delta=b^2-4ac=3^2-4.2.\left(-14\right)=9+112=121>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{121}}{2.2}=\frac{-3-11}{4}=-\frac{7}{2}\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{121}}{2.2}=\frac{-3+11}{4}=\frac{8}{4}=2\)
\(x^2-4-\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(5-x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+5-x\right)=0\)
\(\Leftrightarrow\left(x-2\right).7=0\)
\(\Leftrightarrow7x-14=0\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
\(\frac{x-15}{23}+\frac{x-23}{15}-2=0\)
\(\Leftrightarrow\left(\frac{x-15}{23}-1\right)+\left(\frac{x-23}{15}-1\right)=0\)
\(\Leftrightarrow\frac{x-38}{23}+\frac{x-38}{15}=0\)
\(\Leftrightarrow\left(x-38\right)\left(\frac{1}{23}+\frac{1}{15}\right)=0\Rightarrow x-38=0\Leftrightarrow x=38\)
\(5x^2-23=0\)
\(\Rightarrow5x^2=23\)
\(\Leftrightarrow x^2=\frac{23}{5}\)
\(\Rightarrow x=\sqrt{4,6}=2,144....\)