K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

A B C H G M N K D

Ta có: MN II BC => HK\(⊥\)MN

Theo Talet có: \(\frac{HK}{AH}=\frac{GD}{AD}=\frac{1}{3}\)

và: \(\frac{MG}{BD}=\frac{AG}{AD}=\frac{2}{3}\)(*)

\(\frac{GN}{DC}=\frac{AG}{AD}=\frac{2}{3}\)(**)

tỪ (*) và (**) => \(\frac{MN}{BC}=\frac{2}{3}\)

Vậy diện tích tam giác HMN=\(S_{HMN}=\frac{2}{9}.S_{ABC}=\frac{2.36}{9}=8\)

14 tháng 10 2017

Chọn đáp án D

Ta có

Khi đó 

Gọi I là trung điểm của AB.

Ta có SA=SB=AB=CA=CB=a nên tam giác SAB và tam giác ABC đều cạnh a.

Khi đó A B ⊥ S I , A B ⊥ C I  và S I = C I = a 3 a  

 

Mặt khác S I = C I = S C = a 3 2  nên ∆ S I C  đều

 

Vậy góc giữa hai mặt phẳng (MNP)  và (ABC) bằng  60 0

1 tháng 3 2022

gfvfvfvfvfvfvfv555