Cho A = 1 2 + 1 3 + 1 4 + ... + 1 200 ; B = 1 199 + 2 198 + 3 197 + ... + 198 2 + 199 1 . Tính A B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\Rightarrow A=B\)
Khi đó, \(\frac{A}{B}=1\)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{200^2}\)
\(\Rightarrow A< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{198\cdot199}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{199}\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
A < 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 90x 1
16 36 64 100 144 196 256 324 400 484
A < 698249 + 45
5080320 242
A < 197445329 < 1
607458720 3
=> A < 1
3
Ta có :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{200^2}\)
\(\Rightarrow\) \(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{199.200}\)
\(\Rightarrow\) \(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}=1-\dfrac{1}{200}\)
\(\Rightarrow\) \(A< 1\) (đpcm)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{200^2}< \dfrac{1}{199.200}\)
⇒A<\(\dfrac{1}{1.2}.\dfrac{1}{2.3}.\dfrac{1}{3.4}.....\dfrac{1}{199.200}\)
A<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
A<\(1-\dfrac{1}{200}\)
A\(< \)\(\dfrac{199}{200}\)\(< 1\)(đpcm)
Ta có :
B = 1/ 199 + 2/ 198 + 3/197+...+ 1+ 1 + 1 + ....+ 1. ( tách 199/1 = tổng của 199 số 1)
B = 1 + ( 1+ 1/199) + (1 + 1/198) + ( 1+ 1/197) +....+ (1 + 198/2)
B = 200/200 + 200/199 + 200/198 + 200/197 +...+ 200/2
B = 200 x ( 1/200 + 1/199 + 1/198 + 1/197 +...+ 1/2)
=> A/B =1/ 200
Áp dụng công thức \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)ta có:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}=\frac{\frac{201.202}{2}-1}{2}=10150\)
\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+....+\frac{1}{200^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2.100\right)^2}\)
\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{100^2}\)
\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\right)=\frac{1}{4}.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{\frac{1}{4}A}=\frac{A}{\frac{A}{4}}=A.\frac{4}{A}=4\)
B = 1 199 + 2 198 + 3 197 + ... + 198 2 + 199 1 = 1 199 + 1 + 2 198 + 1 + ... + 198 2 + 1 + 1 = 200 199 + 200 198 + ... + 200 2 + 200 200 = 200 1 2 + 1 3 + ... + 1 200 = 200 A ⇒ B A = 200 A A = 200