cho tam giác có AB=AC= 5cm; BC=6cm. gọi D là trung điểm BC
a) chứng minh tam giác ABD=ACD
b) Kẻ DE vuông góc với Ab(E thuộc Ab). Kẻ DF vuông góc với a=AC(F thuộc AC)chứng minh tam giác EDF là tam giác cân
c) chứng minh: EF//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì cạnh AC = BC = 5cm nên ∠B = ∠A và cùng là góc lớn nhất. Chọn D
bạn tự vẽ hình
a)ta có AB/CB=2/3;BC/BI=BC/AB+AI=2/3
Xét tam giác ABC và tam giác CBI:
AB/CB=BC/BI(=2/3)
góc ABC chung
suy ra:tam giác ABC~tam giác CBI
b)có lẽ sai đề.Xem kĩ lại nhé
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)
nên ΔAHC vuông cân tại H
=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)
a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/4=DC/5=(DB+DC)/(4+5)=6/9=2/3
=>DB=8/3cm; DC=10/3cm
b: Xét ΔBAC có DK//AB
nên DK/AB=CD/CB
=>DK/4=10/3:6=10/18=5/9
=>DK=20/9cm
Xét ΔBAC có DE//AC
nên DE/AC=BD/BC
=>DE/5=8/3:6=8/18=4/9
=>DE=20/9cm
Xét tứ giác AEDK có
AE//DK
AK//DE
=>AEDK là hbh
mà AD là phân giác
nên AEDK là hình thoi
=>AE+DE=DK=AK=20/9cm
Ta có \(\Delta ABC\)cân tại A ( AB = AC ) \(\Rightarrow\)\(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABD\)và \(\Delta ACD\)có :
AB = AC ( gt )
BD = CD ( gt )
\(\widehat{B}=\widehat{C}\)( CMT )
Suy ra \(\Delta ABD\)= \(\Delta ACD\)
còn b;c cậu ạ