K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

A=\(\frac{2007^{2007}}{2008^{2008}}\)

B=\(\frac{2008^{2008}}{2009^{2009}}\)

7 tháng 9 2017

A be honB

21 tháng 7 2016

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}\right)-\left(\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}+\frac{1}{a^n}\right)\)

\(=1-\frac{1}{a^n}< 1\Rightarrow S_n< \frac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho \(a=2008\)và mọi n bằng 2 , 3 , ..... , 2007, ta được:

\(B=\frac{1}{2008}+\left(\frac{1}{2008}+\frac{1}{2008^2}\right)^2+...+\left(\frac{1}{2008}+\frac{1}{2008^2}+...+\frac{1}{2008^{2007}}\right)^{2007}< \frac{1}{2007}\)

\(+\left(\frac{1}{2007}\right)^2+...+\left(\frac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho \(a=2007\)và \(n=2007\), ta được:

\(\frac{1}{2007}+\frac{1}{2007^2}+...+\frac{1}{2007^{2007}}< \frac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => \(B< A.\)

6 tháng 3 2016

a=b

a>b

a<b

ba câu chắc chắn 1 câu đúng

6 tháng 3 2016

a=b

a>b

a<b

trong 3 câu trên chắc chắn 1 câu đúng

26 tháng 7 2017

ta có: \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)

A = \(1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)

A= \(4\)\(+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Do 1/2007 < 1/2006 ; 1/2008<1/2006 ; 1/2009<1/2006=> 1/2007 + 1/2008 + 1/2009 < 1/2006 + 1/2006 + 1/2006

Mà 1/2006 + 1/2006 + 1/2006 = 3/2006

=> 3/2006  -( 1/2007 + 1/2008 + 1/2009) > 0 

=> \(4+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)>4\)

=> A > 4

26 tháng 7 2017

Ta có:\(\frac{2006}{2007}< 1\)

           \(\frac{2007}{2008}< 1\)

           \(\frac{2008}{2009}< 1\)

            \(\frac{2009}{2006}>1\)\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)

DD
16 tháng 5 2021

\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)

\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).

\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).

Suy ra \(A>B\).