Số các giá trị nguyên của tham số m ∈ - 2018 ; 2018 để PT x 2 + m + 2 x + 4 = m - 1 x 3 + 4 x có nghiệm là
A. 2016
B. 2010
C. 2012
D. 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có y ' = m x 2 − 3 m + 2 x + 5 m − 1
Để hàm số đồng biến trên khoảng − 1 ; 2 thì y ' ≥ 0, ∀ x ∈ − 1 ; 2 .Dấu bằng xảy ra tại hữu hạn điểm
Cách 1:
Do ta chỉ xét giá trị m nguyên âm nên m x 2 − 3 m + 2 x + 5 m − 1 = 0 là phương trình bậc hai. Đặt f x = m x 2 − 3 m + 2 x + 5 m − 1
TH1: Hàm số có hai điểm cực trị
Để thỏa mãn y ' ≥ 0, ∀ x ∈ 0 ; 2 thì phương trình y ' = 0 có hai nghiệm x 1 ; x 2 thỏa mãn x 1 ≤ − 1 < 2 ≤ x 2
⇔ m . f − 1 ≤ 0 m . f 2 ≤ 0 ⇔ m . m + 3 m + 2 + 5 m − 1 ≤ 0 m . 4 m − 2 3 m + 2 + 5 m − 1 ≤ 0
⇔ m 9 m + 1 ≤ 0 m 3 m − 5 ≤ 0 ⇔ m ≥ − 1 9 m ≥ 5 3 ⇔ m ≥ 5 3
(do m nguyên âm nên không thỏa mãn)
TH2: Hàm số không có điểm cực trị
Để thỏa mãn yêu cầu đề bài thi Δ < 0 m > 0 (do m nguyên âm nên không thỏa mãn)
Vậy ta chọn B.
Cách 2:
y ' ≥ 0 ⇔ m x 2 − 3 m + 2 x + 5 m − 1 ≥ 0 ⇔ m x 2 − 3 x + 5 ≥ 2 x + 1 ⇔ m ≥ 2 x + 1 x 2 − 3 x + 5
(do x 2 − 3 x + 5 > 0 ∀ x )
Đặt g x = 2 x + 1 x 2 − 3 x + 5 . Ta có g ' x = − 2 x 2 − 2 x + 13 x 2 − 3 x + 5 2 > 0 ∀ x ∈ − 1 ; 2 . Vậy g x đồng biến trên − 1 ; 2
Để m ≥ g x ∀ x ∈ − 1 ; 2 thì m ≥ max x ∈ − 1 ; 2 g x = g 2 = 5 3
Hàm số bậc nhất đồng biến suy ra a > 0 hay m > 2
m thuộc đoạn [-2018; 2018] suy ra m thuộc {3; 4; ...; 2018}
Vậy có 2016 giá trị nguyên của m cần tìm.
Chọn D.
Đáp án A
Đồ thị hàm số y = f x có 3 điểm cực trị Đồ thị hàm số y = f x + 2018 có 3 điểm cực trị
Dựa vào ĐTHS y = f x ⇒ y = f x + 2018 có 7 điểm cực trị
Do đó, để hàm số y = f x + 2018 + 1 3 m 2 có 5 điểm cực trị khi và chỉ khi 3 ≤ 1 3 m 2 ≤ 6
Kết hợp với điều kiện m ∈ ℤ + suy ra m = 3 ; 4
Chú ý: Đồ thị hàm số y = f x + C được cho bởi cách tịnh tiến đồ thị hàm số theo trục Oy C đơn vị
Đáp án C.
Điều kiện: x ≥ 0 . Dễ thấy x = 0 không là nghiệm của phương trình.
Xét x > 0 chia cả 2 vế của phương trình cho x ta được: x 2 + 4 x - m - 1 x 2 + 4 x + m + 2 = 0 (*).
Đặt t = x 2 + 4 x ≥ 4 x x = 2 ⇒ t ∈ [ 2 ; + ∞ ) , khi đó phương trình (*) ⇔ t 2 - m - 1 t + m + 2 = 0
Vì t ≥ 2 ⇔ t - 1 ≠ 0 nên phương trình (*) ⇔ t 2 + t + 2 = m t - 1 ⇔ m = t 2 + t + 2 t - 1 .
Xét hàm số f t = t 2 + t + 2 t - 1 trên [ 2 ; + ∞ ) , có f ' t = t 2 - 2 t - 3 t - 1 2 suy ra m i n [ 2 ; + ∞ ) f t = 7 .
Khi đó, để phương trình m = f(t) có nghiệm ⇔ m ≥ m i n [ 2 ; + ∞ ) f t = 7 .
Kết hợp với m ∈ [ - 2018 ; 2018 ] và m ∈ ℤ suy ra có tất cả 2012 giá trị nguyên m.