\(x^2+\left(2-m\right)x+4=4\sqrt{x^3+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2020

Đồ thị hàm số nhận Oy làm trục đối xứng khi nó là hàm chẵn

Dễ dàng nhận ra miền xác định của hàm số là 1 miền đối xứng

Khi x thuộc TXĐ, ta có:

\(f\left(-x\right)=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) (tất nhiên \(m\ne\pm1\))

\(f\left(-x\right)=f\left(x\right)\) \(\forall x\in D\)

\(\Leftrightarrow\frac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\frac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\) \(\forall x\in D\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}+\left(m^2+m-2\right)\sqrt{2018-x}=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=-2\end{matrix}\right.\)

Vậy \(m=-2\)

NV
24 tháng 10 2019

\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)

Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)

2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)

Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)

3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)

4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)

Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)

\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)

24 tháng 10 2019

cảm ơn bạn nhiều nhé

25 tháng 10 2020

1.

\(y=m-1=\left|-x^2+4x+5\right|\)

Phương trình đã cho có 4 nghiệm phân biệt khi đương thẳng \(y=m-1\) cắt đồ thị hàm số tại 4 điểm phân biệt

\(\Rightarrow0< m-1< 9\Rightarrow m\in\left(1;10\right)\)