Lập phương trình (P) có đỉnh là A(1;-2) và (P) chắn trên đường thẳng (d) : y = x + 1 một dây cung \(MN=\sqrt{34}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm của \(d_1;d_2\) là nghiệm: \(\left\{{}\begin{matrix}5x+4y-1=0\\8x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow\) Đây là đỉnh A hoặc B (do tọa độ khác tọa độ C)
Không mất tính tổng quát, giả sử \(A\left(1;-1\right)\)
\(\Rightarrow\) Đường cao AH ứng với BC có pt là 5x+4y-1=0
Do AH vuông góc BC nên BC nhận (4;-5) là 1 vtpt
Phương trình BC:
\(4\left(x-3\right)-5\left(y-5\right)=0\Leftrightarrow4x-5y+13=0\)
\(\overrightarrow{AC}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) AC nhận (3;-1) là 1 vtpt
Phương trình AC:
\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)
B thuộc BC nên tọa độ có dạng: \(\left(b;\dfrac{4b+13}{5}\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{b+3}{2};\dfrac{2b+19}{5}\right)\)
M thuôc trung tuyến \(d_2\) qua A nên:
\(8\left(\dfrac{b+3}{2}\right)+\left(\dfrac{2b+19}{5}\right)-7=0\) \(\Rightarrow b=-2\)
\(\Rightarrow B\left(-2;1\right)\) \(\Rightarrow\overrightarrow{AB}=\left(-3;2\right)\)
Phương trình AB: \(2\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y+1=0\)
Thay tọa độ A vào 2 pt trung tuyến đều không thỏa mãn
\(\Rightarrow\) 2 trung đó đó xuất phát từ B và C, giả sử trung tuyến xuất phát từ B có pt x-2y+1=0 và từ C có pt y=1
\(\Rightarrow B\left(2b-1;b\right)\) ; \(C\left(c;1\right)\)
Gọi G là trọng tâm tam giác \(\Rightarrow\) G là giao điểm 2 trung tuyến nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x-2y+1=0\\y=1\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)
Áp dụng công thức trọng tâm:
\(\left\{{}\begin{matrix}1+2b-1+c=3.1\\3+b+1=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2b+c=3\\b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-1\\c=5\end{matrix}\right.\)
\(\Rightarrow B\left(-3;-1\right)\) ; \(C\left(5;1\right)\)
Biết 3 tọa độ 3 đỉnh của tam giác, dễ dàng viết được phương trình các cạnh
A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)
Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)
Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là \(\vec{n}\) (5; -3)
=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\)
B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)
=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)
Pt chùm parabol đỉnh A(1;-2) là (P) : y=m(x-1)2-2 \(\left(m\ne0\right)\)(1)
Pt hoành độ giao điểm của (P) và đường thẳng d là \(m\left(x-1\right)^2-2=x+1\Leftrightarrow mx^2-\left(2m+1\right)x+m-3=0\)(2)
Với \(0\ne m\ge\frac{-1}{16}\), pt (2) có 2 nghiệm phân biệt x1,x2, đó là hoành độ giao điểm M,N của (P) và đường thẳng d.
Từ (2) \(\Rightarrow\left(x_1-x_2\right)^2=\frac{\Delta}{m^2}\)với \(\Delta\)là biệt thức
M,N thuộc đường thẳng d nên \(y_1-y_2=x_1-x_2\)
\(\Rightarrow MN^2=2\frac{\Delta}{m^2}\). Do \(MN=\sqrt{34}\)NÊN \(\frac{2\Delta}{m^2}=34\)
\(\Rightarrow17m^2-16m-1=0\)có 2 nghiệm m=1 và \(m=\frac{-1}{17}\)đều thoả mãn \(0\ne m\ge\frac{-1}{16}\)
Thay các giá trị của m vừa tìm được vào (1), ta có 2 pt parabol cần tìm là:
\(\left(P_1\right):y=x^2-2x-1\)
\(\left(P_2\right):y=\frac{-1}{17}\left(x^2-2x-35\right)\)