K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2020

Pt chùm parabol đỉnh A(1;-2) là (P) : y=m(x-1)2-2 \(\left(m\ne0\right)\)(1)

Pt hoành độ giao điểm của (P) và đường thẳng d là \(m\left(x-1\right)^2-2=x+1\Leftrightarrow mx^2-\left(2m+1\right)x+m-3=0\)(2)

Với \(0\ne m\ge\frac{-1}{16}\), pt (2) có 2 nghiệm phân biệt x1,x2, đó là hoành độ giao điểm M,N của (P) và đường thẳng d.

Từ (2) \(\Rightarrow\left(x_1-x_2\right)^2=\frac{\Delta}{m^2}\)với \(\Delta\)là biệt thức

M,N thuộc đường thẳng d nên \(y_1-y_2=x_1-x_2\)

\(\Rightarrow MN^2=2\frac{\Delta}{m^2}\). Do \(MN=\sqrt{34}\)NÊN \(\frac{2\Delta}{m^2}=34\)

\(\Rightarrow17m^2-16m-1=0\)có 2 nghiệm m=1 và \(m=\frac{-1}{17}\)đều thoả mãn \(0\ne m\ge\frac{-1}{16}\)

Thay các giá trị của m vừa tìm được vào (1), ta có 2 pt parabol cần tìm là:

\(\left(P_1\right):y=x^2-2x-1\)

\(\left(P_2\right):y=\frac{-1}{17}\left(x^2-2x-35\right)\)

7 tháng 8 2019

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.

18 tháng 4 2021

 

M N I (d) H

gọi M,N là hai điểm cắt đg tròn tâm I 

kẻ IH vuông góc với MN ,theo đề bài ta có MN =6 => MH=3 

độ dài từ tâm I đến (d) =\(\dfrac{\left|2.3-5.-1+18\right|}{\sqrt{2^2+\left(-5\right)^2}}=\sqrt{29}\)

Áp dụng pytago vào tam giác vuông IMH ta có 

\(IM=\sqrt{IH^2+MH^2}=\sqrt{38}\)

vậy pt đg tròn là \(\left(x-3\right)^2+\left(y+1\right)^2=\left(\sqrt{38}\right)^2\)( tới đây bạn tự khai triển ra nha 

b ) cách làm tương tự 

2 .

I N M H P

MN max khi nó là đường kính > nó phải đi qua điểm I 

\(\overrightarrow{uIA}=\left(4;-2\right)=>n\overrightarrow{IA}=\left(2;4\right)\)

ptđt \(\Delta:2\left(x-3\right)+4\left(y-0\right)=0\)

MN min 

ta có MN=2HM 

trg tam giác vuông IHMtheo pytago ta có  \(HM=\sqrt{IA^2-IH^2}\)có  IA là bán kính ( cố định ) => IH max thì MN min 

lại xét tam giác IHP trong tam giác IHP thì có IP là cạch huyền mà trg tam giác cạc huyền là cạch lớn nhất nên IH max khi điểm H trùng với điểm P .

 

 

18 tháng 4 2021

vậy toạ độ A trùng với P nên \(u\overrightarrow{IP}=\left(4;-2\right)=n\overrightarrow{\Delta}\)

ptđt là \(4\left(x-3\right)-2\left(y-0\right)=0\)

mình trình bày hơi tệ bạn thông cảm nha !

11 tháng 4 2019

Đáp án B

Đường tròn (C) có tâm I( 1; -3) và R= 2

 có phương trình  4x- 3y+ m= 0.

Vẽ

Vậy:

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

a: MN lớn nhất

=>MN là đường kính

=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)

Ta có hệ pt:

3a+b=0 và -a+b=2

=>a=-1/2 và b=1/2

b: Kẻ IH vuông góc MN

MN nhỏ nhất khi H trùng với A

=>vecto IA=(4;-2)

Δ có phương trình là:

4(x-3)+(-2)(y-0)=0

=>4x-12-2y=0

24 tháng 5 2023

fdbxdg

NV
14 tháng 4 2022

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

NV
9 tháng 4 2021

Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)

\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)

25 tháng 6 2018

Đáp án C

Đường thẳng d đi qua điểm M(-2 ;3 ;2) và có vectơ chỉ phương là u d → = (-4; 1; 1). Ta có:

(C): x^2+y^2-4x+6y-12=0

=>O(2;-3)

R=căn 2^2+(-3)^2+12=5

Gọi đường cần tìm là (d'): x+y+c=0

Gọi A,B lần lượt là giao điểm của (d') và (C)

ΔOHB vuông tại H

\(d\left(O;AB\right)=\dfrac{\left|2+\left(-3\right)+c\right|}{\sqrt{2}}=HO\)

\(=\sqrt{OB^2-BH^2}=3\)

=>\(\left[{}\begin{matrix}c=3\sqrt{2}+1\\c=-3\sqrt{2}+1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+y-3\sqrt{2}+1=0\\x+y+3\sqrt{2}+1=0\end{matrix}\right.\)