K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2022

Giao điểm của \(d_1;d_2\) là nghiệm: \(\left\{{}\begin{matrix}5x+4y-1=0\\8x+y-7=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\Rightarrow\) Đây là đỉnh A hoặc B (do tọa độ khác tọa độ C)

Không mất tính tổng quát, giả sử \(A\left(1;-1\right)\)

\(\Rightarrow\) Đường cao AH ứng với BC có pt là 5x+4y-1=0

Do AH vuông góc BC nên BC nhận (4;-5) là 1 vtpt

Phương trình BC: 

\(4\left(x-3\right)-5\left(y-5\right)=0\Leftrightarrow4x-5y+13=0\)

\(\overrightarrow{AC}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) AC nhận (3;-1) là 1 vtpt

Phương trình AC:

\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)

B thuộc BC nên tọa độ có dạng: \(\left(b;\dfrac{4b+13}{5}\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{b+3}{2};\dfrac{2b+19}{5}\right)\)

M thuôc trung tuyến \(d_2\) qua A nên:

\(8\left(\dfrac{b+3}{2}\right)+\left(\dfrac{2b+19}{5}\right)-7=0\) \(\Rightarrow b=-2\)

\(\Rightarrow B\left(-2;1\right)\) \(\Rightarrow\overrightarrow{AB}=\left(-3;2\right)\)

Phương trình AB: \(2\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y+1=0\)

AH: x+y-1=0

=>VTPT là (1;1)

=>vecto BC=(1;1)

=>4-x=1 và 1-y=1

=>x=3 và y=0

=>B(3;0)

BK: 3x-y-7=0

=>VTPT là (3;-1)

=>vecto AC=(3;-1)

=>4-x=3 và 1-y=-1

=>x=1 và y=2

=>A(1;2)

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

24 tháng 4 2020

Gọi D là giao điểm của hai đường phân giác trong góc B và góc C

+) Trên BC lấy điểm M sao cho: AM vuông BD tại H 

=> Đường thẳng AM \(\perp\)BH => AM có dạng: 2x + y + a = 0 

mà A ( 2; -1) \(\in\)AM => 2.2 + ( -1) + a = 0 <=> a = -3

=> phương trình đt: AM : 2x + y - 3 = 0 

H là giao của AM và BD => Tọa độ điểm H là nghiệm hệ: \(\hept{\begin{cases}x-2y+1=0\\2x+y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)=> H ( 1; 1) 

Lại có: BH vừa là đường cao vừa là đường phân giác \(\Delta\)ABM => \(\Delta\)ABM cân =>  H là trung điểm AM 

=> \(\hept{\begin{cases}x_M=2x_H-x_A=2.1-2=0\\y_M=2y_H-y_B=2.1-\left(-1\right)=3\end{cases}}\)=> M ( 0; 3 ) 

+) Trên BC lấy lấy điêm N sao cho AN vuông CD tại K 

Làm tương tự như trên ta có: 

AN có dạng: x - y + b = 0 mà A thuộc AN => 2 + 1 + b = 0 => b = - 3 

K là giao điểm của AN và CD => K ( 0; -3 ) 

K là trung điểm AN => N ( -2; -5 )

=> Đường thẳng BC qua điểm M  và N 

\(\overrightarrow{MN}\left(-2;-8\right)\)=> VTPT của BC là: \(\overrightarrow{n}\left(8;-2\right)\)

=> Phương trình BC : \(8\left(x-0\right)+\left(-2\right)\left(y-3\right)=0\)

<=> 4x -y + 3 = 0 

Vậy: BC : 4x - y + 3 = 0

24 tháng 4 2020

A B C H K D M N