K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

Ta có :

\(\left(x+\frac{1}{x}\right)\cdot\left(y+\frac{1}{y}\right)=3.5\)

\(\Leftrightarrow xy+\frac{x}{x}+\frac{y}{y}+\frac{1}{xy}=15\)

\(\Leftrightarrow xy+\frac{1}{xy}=15-2\)

\(\Leftrightarrow xy+\frac{1}{xy}=13\)

Hay A = 13

15 tháng 1 2017

a/ Đặt: \(x+\frac{1}{x}=a\)

Ta có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)=a^3-3a\)

\(x^6+\frac{1}{x^6}=\left(x^3+\frac{1}{x^3}\right)^2-2=\left(\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)\right)^2-2\)

\(=\left(a^3-3a\right)^2-2\)

\(\Rightarrow M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)

\(=\frac{a^6-\left(a^3-3a\right)^2+2-2}{a^3+a^3-3a}\)

\(=\frac{\left(a^3+a^3-3a\right)\left(a^3-a^3+3a\right)}{\left(a^3+a^3-3a\right)}=3a\)

\(=3.\left(x+\frac{1}{x}\right)=\frac{3x^2+3}{x}\)

b/ \(\frac{3x^2+3}{x}=3x+\frac{3}{x}\ge2.3=6\)

Đấu =  xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)

2 tháng 1 2020

BĐT\(\Leftrightarrow\left(\frac{1}{x-1}\right)^3+\left(\frac{x-1}{y}\right)^3+\left(\frac{1}{y}\right)^3\ge3\left(\frac{1}{x-1}+\frac{x-1}{y}+\frac{1}{y}-2\right)\)

Đặt \(\left(\frac{1}{x-1};\frac{x-1}{y};\frac{1}{y}\right)=\left(a;b;c\right)\)

BĐT cần cm \(\Leftrightarrow a^3+b^3+c^3\ge3\left(a+b+c-2\right)\)

\(\Leftrightarrow\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3\left(a+b+c\right)\)

Đúng theo AM-GM --> đpcm

24 tháng 11 2018

Ta có :  

\(P=\frac{\left(x+\frac{1}{x}^6\right)-\left(x^6+\frac{1}{x}^6\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)

\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x}^3\right)\)

\(=3\left(x+\frac{1}{x}\right)\ge6\left(x>0\right)\)

\(\Rightarrow Pmin=6\Leftrightarrow x=1\)

5 tháng 11 2019

Áp dụng BĐT cô si\(\frac{1}{\left(x-1\right)^3}+1+1\ge\sqrt[3]{\frac{1}{\left(x-1\right)^3}\cdot1\cdot1}=\frac{1}{x-1}\)

\(\Rightarrow\frac{1}{\left(x-1\right)^3}\ge\frac{3}{x-1}-2\left(1\right)\)

\(\left(\frac{x-1}{y}\right)^3+1+1\ge3\sqrt[3]{\left(\frac{x-1}{y}\right)^3\cdot1\cdot1}=\frac{3x-3}{y}\)

\(\Rightarrow\left(\frac{x-1}{y}\right)^3\ge\frac{3x-3}{y}-2\left(2\right)\)

\(\frac{1}{y^3}+1+1\ge\sqrt[3]{\frac{1}{y^3}\cdot1\cdot1}=\frac{3}{y}\Rightarrow\frac{1}{y^3}=\frac{3}{y}-2\left(3\right)\)

Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\ge\frac{3}{x-1}-6+\frac{3x-3}{y}+\frac{3}{y}\)

\(=\frac{3-6x+6}{x-1}+\frac{3x}{y}\)

\(=3\left(\frac{3-2x}{x-1}+\frac{x}{y}\right)\)

4 tháng 12 2017

Ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\)

\(\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{\left(x-1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)\)

\(=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)