Tìm các số tự nhiên a , b thỏa mãn các điều kiện sau :
( a ; b ) = 1 và \(\frac{5a+7b}{6a+5b}=\frac{28}{29}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
` 16<a<b`
`20>c>b`
`=>16<a<b<b<20/
`=> a= 17`
`b = 18`
`c = 19`
Bộ 3 số tự nhiên a, b, c chỉ có \(\left\{32;33;34\right\}\) thỏa mãn yêu cầu đề bài
tu 2 gia thiet suy ra 20<a<b<c<24
suy ra a=21;b=22;c=23 do a,b,c la so tu nhien
Từ giả thiết ta có : 20<a<b<c<24
Vì a,b,c là 3 số tự nhiên nên : a=21 ; b=22 ; c=23
...
Ta có: Số tự nhiên là các số nguyên (không có phần thập phân) và từ 0 trở lên
Mà: A>2013,2013
=> A =2013+1
=>A=2014 (Vì số liền nhau)
\(\frac{5a+7b}{6a+5b}=\frac{28}{29}\)
\(\Leftrightarrow29\left(5a+7b\right)=28\left(6a+5b\right)\)
\(\Leftrightarrow145a+203b=168a+140b\)
\(\Leftrightarrow63b=23a\)
\(\Leftrightarrow\frac{a}{b}=\frac{63}{23}\)
Mà \(\left(a;b\right)=1\) nên \(a=63;b=23\)