b) Tính số đo ABM
Cho hình thang ABCD (AB // CD) có AB=BC và DAC=87
độ; ADC=75 độ
a) chứng minh Tam giác ABM= tam giác CBM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: AB//CD
=>góc A+góc D=180 độ và góc B+góc C=180 độ
=>góc A+góc D=góc B+góc C
2: góc A+góc D=180 độ
góc A=3*góc D
=>góc A=3/4*180=135 độ và góc D=180-135=45 độ
góc B=góc C
góc B+góc C=180 độ
=>góc B=góc C=180/2=90 độ
Bạn tự vẽ hình được ko?
giải:
Vì hình thang ABCD có đường cao AH nên góc AHD=90 độ
Tam giác AHD có: \(\widehat{D}+\widehat{DAH}+\widehat{AHD}=180\) độ
\(\Rightarrow\widehat{D}+15+90=180\)
\(\Rightarrow\widehat{D}=180-15-90\)
\(\Rightarrow\widehat{D}=75\)
Tam giác DAC có: \(\widehat{D}+\widehat{DAC}+\widehat{ACD}=180\)
\(\Rightarrow75+90+\widehat{ACD}=180\)
\(\Rightarrow\widehat{ACD}=180-90-75\)
\(\Rightarrow\widehat{ACD}=15\)
Vậy số đo của góc ACD là 15 đô
Hạ CH và DK vuông góc với AB
Ta có:
A K = B H = 1 2 A D = 1 c m
Từ đó: CD = 2,5cm
C H = 3 c m
S A B C D = A B + C D . C D 2 = 7 3 2 c m 2
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)