Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 tam giác bằng 180 độ
mà ta có A+B+C = 180
=> A = 180-(B+C)
A=180 - 130
A=50độ
A B M I K C D
a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ACB}=65^o\)
b, Xét △ABM và △DCM
Có: MA = MD (giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(BM=MC\)(M là trung điểm của BC)
=> △ABM = △DCM (c.g.c)
=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // CD
c, Xét △IMB và △KMC
Có: \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)
BM = MC (gt)
\(\widehat{ABC}=\widehat{MCD}\)(cmt)
=> △IMB = △KMC (g.c.g)
=> MI = MK (2 cạnh tương ứng)
Mà M nằm giữa I, K
=> M là trung điểm của IK
Bạn vẽ hình ...
a)
Xét \(\Delta ABM\)và \(\Delta DCM\)có
\(AM=MD\left(gt\right)\)
\(\widehat{AMB}=\widehat{DCM}\left(đ^2\right)\)
\(BM=MC\left(gt\right)\)
=> \(\Delta ABM\)=\(\Delta DCM\)(c.g.c)
a) Theo định lí Pi-ta-go ta có
AB^2+AC^2=BC^2
=> 3^2+4^2=BC^2
=> 9+16=BC^2
=> BC^2=25
=> BC=căn 25
=> BC=5
b)
Xét tam giác AMB và tam giác CMD có
AM=MC (GT)
BM=MD (GT)
Góc AMB= góc DMC (đối đỉnh)
=> tam giác AMB=tam giác CDM(cạnh-góc-cạnh)
=>góc BAM=góc MCD (=90 độ)
c)Xét tam giác vuông AMB
Theo định lí Pi -ta-go ta có
AB^2+AM^2=BM^2
3^2+2^2=BM^2
9+4=BM^2
=>BM^2=13
=>BM=căn 13
=>2BM=2* căn 13
Mà AB+BC=3+5=8
Do 2*căn 13<8
=>2BM<8
d)chịu
phần a,b,c tương đối đơn giản nên em tự chứng minh nhé
phần d : thì cũng ở mức độ khá một chút: gợi ý cho em nhé
chứng minh: góc D = góc ABD (1) ( vì tam giác MBA = Tam giác MDC ( c.g.c) )
xét tam giác BCD có : BC > CD ( 5cm > 3cm )=> góc D > Góc CBD hay góc D > góc CBM (2)
Từ (1) và (2) => đpcm
a) \(AC^2=BC^2-AB^2\)
\(AC^2=10^2-6^2\)
\(AC^2=100-36\)
\(AC^2=64\)
\(AC=8\)
A D C B M
mình vẽ cái hinhf nó ko đc đẹp với chính xác đâu
b) Xét \(\Delta ABM\) và \(\Delta CDM\) ta có
BM = DM ( gt )
M là góc chung
AM = CM ( BN là đường trung tuyến )
Vậy \(\Delta AMB\) = \(\Delta CDM\) ( c.g.c )
\(\Rightarrow\) AB = CD ( 2 góc tương ứng )