K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2023

Bạn xem lại đề bài, k có yêu cầu gì?

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$

$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b)(c+a)(c+b)=0$

$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$

Không mất tổng quát giả sử $a+b=0$

$\Leftrightarrow a=-b$.

Khi đó:

$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$

$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.

5 tháng 12 2017

Ta có:\(a^{2017}+b^{2017}+c^{2017}-a-b-c\)

\(=a.\left(a^{2016}-1\right)+b.\left(b^{2016}-1\right)+c.\left(c^{2016}-1\right)\)

\(=a\left(a-1\right)\left(a^{2015}+...+a+1\right)+b\left(b-1\right)\left(b^{2015}+...+b+1\right)+c\left(c-1\right)\left(c^{2015}+...+c+1\right)\)

Ta có:\(a^{2015}+a^{2014}+.....+a+1=a^{2014}\left(a+1\right)+.......+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^{2014}+a^{2012}+.......+1\right)\)\(\Rightarrow a^{2017}-a\) chia hết cho cả 2 và 3

\(\Rightarrow a^{2017}-a⋮6\).Tương tự ta cũng có:\(\hept{\begin{cases}b^{2017}-b⋮6\\c^{2017}-c⋮6\end{cases}}\)

\(\Rightarrow a^{2017}+b^{2017}+c^{2017}-\left(a+b+c\right)⋮6\) mà \(a+b+c⋮6\Rightarrow a^{2017}+b^{2017}+c^{2017}⋮6\)

\(\Rightarrowđpcm\)

6 tháng 12 2017

sai bét