Trong các điểm M( -1; 5); N(1; 4); P(2; 0); Q(3; 1), điểm nào thuộc đồ thị hàm số y = x 2 - 2 x + 5
A. Điểm M
B. Điểm N
C. Điểm P
D. Điểm Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Với điểm M(1;-2;3). Gọi M 1 , M 2 , M 3 lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy, Oz thì tọa độ M 1 (1; 0; 0); M 2 (0 ;-2; 0) và M 3 ( 0; 0; 3).
Phương trình mặt phẳng M1M2M3 là:
x 1 + y - 2 + z 3 = 1
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a) u______________M_____________O____N__________________v
các tia chung gốc M là:
Mu;Mv;MO;MN
các tia đối nhau gốc N là:
Nu và Nv ; NM và Nv; NO và Nv
các tia chùng nhau là:
Nu ;Mu;Ou
vì M và N nằm ở hai tia đối nhau chung gốc O nên O nằm giữa M và N
Theo tích chất đường trung bình trong một tam giác ta có: \(\overrightarrow {PN} = \overrightarrow {BM} = \overrightarrow {MC} \) và \(\overrightarrow {MP} = \overrightarrow {NA} \)
Gọi \(A\left( {{a_1},{a_2}} \right),B\left( {{b_1};{b_2}} \right),C\left( {{c_1};{c_2}} \right)\)
Ta có: \(\overrightarrow {PN} = \left( {2;3} \right)\),\(\overrightarrow {BM} = \left( {1 - {b_1}; - 2 - {b_2}} \right)\), \(\overrightarrow {MC} = \left( {{c_1} - 1;{c_2} + 2} \right)\), \(\overrightarrow {MP} = \left( {5;4} \right)\), \(\overrightarrow {NA} = \left( {{a_1} - 4;{a_2} + 1} \right)\)
Có \(\overrightarrow {PN} = \overrightarrow {BM} \Leftrightarrow \left\{ \begin{array}{l}2 = 1 - {b_1}\\3 = - 2 - {b_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b_1} = - 1\\{b_2} = - 5\end{array} \right.\) .Vậy \(B\left( { - 1; - 5} \right)\)
Có \(\overrightarrow {PN} = \overrightarrow {MC} \Leftrightarrow \left\{ \begin{array}{l}2 = {c_1} - 1\\3 = {c_2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 3\\{c_2} = 1\end{array} \right.\) .Vậy \(C\left( {3;1} \right)\)
Có \(\overrightarrow {NA} = \overrightarrow {MP} \Leftrightarrow \left\{ \begin{array}{l}5 = {a_1} - 4\\4 = {a_2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a_1} = 9\\{a_2} = 3\end{array} \right.\) .Vậy \(A\left( {9;3} \right)\)
bài 1:Qua điểm A và mỗi điểm B,C,D có ba đường thằng là AB, AC,AD. Qua điểm B và mỗi điểm C,D có hai đường thẳng là BC,BD (Không qua A). Qua điểm C và D còn lại có một đường thẳng CD (không đi qua A,B).
Chú ý: có thể trình bày ngắn gọn như sau : với 4 điểm A,B,C,D thì có 6 đường thẳng AB,AC,AD,BC,BD,CD
bài 2:Vì 3 điểm M,N,P thẳng hàng nên đường thẳng đi qua cả 3 điểm M,N,P trùng nhau và Q nằm ngoài đường thẳng trên nên kẻ được 3 đường thẳng lần lượt đi qua 3 điểm thẳng hàng.
Vậy ta có 4 đường thẳng: MP,QN,QM,QP(không kể MN, NP)
Thay tọa độ từng điểm vào công thức hàm số, nếu được đẳng thức đúng thì điểm đó thuộc đồ thị.
* Với điểm M (-1;5), ta thay x = -1; y = 5 vào công thức y = x 2 - 2 x + 5 , nhận thấy
5 ≠ ( - 1 ) 2 - 2 . - 1 + 5 nên M không thuộc đồ thị hàm số.
* Với N (1; 4) ta được:
4= 12 – 2.1 + 5 nên điểm N thuộc đồ thị hàm số.
* Với P(2; 0) ta được:
0 ≠ 2 2 - 2 . 2 + 5 nên điểm P không thuộc đồ thị hàm số.
* Với điểm Q(3; 1) ta được:
1 ≠ 3 2 - 2 . 3 + 5 nên điểm Q không thuộc đồ thị hàm số.