Bài này khó quá giúp với
Chứng minh rằng nếu 3 số a;b;c; t/m
\(\left(a+b-c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=0\)
Thì trong 3 số có 1 số =trung bình cộng cuả 2 số kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:25.12511 < 12811.25 < 277.32 = 282
=> 25.12511 < 282
=> 535 < 282
=> 1035 < 2117
Ta có:
2^96 = 4096^8
2^96 < 41^8.10^16
2^81 < 2.41^8.5^16...(*)
Lại có: 9.2^13 < 9.8200 < 73000 < 625.125
=> 9.2^13 < 5^7
=> 300^2.2^9 < 5^11
=> 17^4.2^9 < 5^11...(vì 17^2 <300)
=> 1700^4.2 < 5^19
=> 2.41^8 < 5^19 ...(vì 41^2 <1700)
=> 2.41^8.5^16 < 5^35
kết hợp với (*) => 2^81 < 5^35
Suy ra:đpcm
=> 2^81 < 5^35 < 2^81
=> 2^116 < 10^35 < 2^117....đpcm
\(10^{35}=2^{35}.5^{35}\)
\(2^{116}=2^{35}.2^{81};2^{117}=2^{35}.2^{82}\)
can C/m
\(2^{81}<5^{35}<2^{82}\)
C/M
\(5^{35}<2^{82}\)(nang mu len 7.3=21 )
\(5^{35.21}<2^{82.21}\Leftrightarrow\left(5^3\right)^{^{7.35}}<\left(2^7\right)^{^{3.82}}\Leftrightarrow125^{245}<128^{246}\)=.> dpcm
50% xem the nao da
Ta có: \(100^{2013}=100.100....100=\overline{100...}\)(Chữ số đầu là 1, còn lại là 0)
\(\Rightarrow100^{2013}+2=\overline{100...2}\).
Ta thấy \(\overline{100...2}\)có tổng các số hạng là 3. Mà \(3⋮3\)(Hiển nhiên)
\(\Rightarrow\overline{100...2}⋮3\Rightarrow100^{2013}+2⋮3\)(đpcm).
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
a) 3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2-2n)
=3n(33+1)-2n(22+1)
=3n.10-2n.5
Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10
3n.10 chia hết cho 10 nên
3n.10-2n.5 chia hết cho 10
=>3n+2-2n+2+3n-2n chia hết cho 10
b)
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2(3n.5+2n+1) chia hết cho 6
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
1+1/22+1/32+...+1/1002 <1+1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<2 (dpcm)
k cho mk nha : thắc mắc liên hệ mk giúp cho.
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)
<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2-\frac{1}{100}< 2\)
Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\) (đpcm)