Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A = 2 + 22 + 23 + 24 + ... + 260
=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
=> A = 2( 1 + 2 ) + 22(1 + 2 ) + ... + 259( 1 + 2 )
=> A = 2 . 3 + 22 . 3 + ... + 259 . 3
=> A = ( 2 + 22 + 259 ) . 3 chia hết cho 3
Vậy A chia hết cho A
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
Lời giải:
$A=9^2+9^3+9^4+...+9^{2014}$
$9A=9^3+9^4+9^5+...+9^{2015}$
$\Rightarrow 9A-A=9^{2015}-9^2$
$\Rightarrow 8A=9^{2015}-81$
$\Rightarrow 8A+81=9^{2015}=(3^2)^{2015}=(3^{2015})^2$ là số chính phương.
\(\dfrac{-1}{4}< \dfrac{x}{24}< \dfrac{-1}{6}\\ \dfrac{-6}{24}< \dfrac{x}{24}< \dfrac{-4}{24}\\ \Rightarrow x=-5\)
\(A=\dfrac{2x+1+4}{2x+1}=1+\dfrac{4}{2x+1}\)
A min khi 2x+1=-1
=>x=-1
Ta có: \(100^{2013}=100.100....100=\overline{100...}\)(Chữ số đầu là 1, còn lại là 0)
\(\Rightarrow100^{2013}+2=\overline{100...2}\).
Ta thấy \(\overline{100...2}\)có tổng các số hạng là 3. Mà \(3⋮3\)(Hiển nhiên)
\(\Rightarrow\overline{100...2}⋮3\Rightarrow100^{2013}+2⋮3\)(đpcm).