K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Ai giúp t câu này vs

30 tháng 12 2018

Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\Leftrightarrow7^2=23+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=13\)

Ta lại có \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}-6=-\sqrt{a}-\sqrt{b}+1\Leftrightarrow\sqrt{ab}+\sqrt{c}-6=\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

Chứng minh tương tự:

\(\sqrt{bc}+\sqrt{a}-6=\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)\)

\(\sqrt{ac}+\sqrt{b}-6=\left(\sqrt{a}-1\right)\left(\sqrt{c}-1\right)\)

Vậy A=\(\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}=\dfrac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\dfrac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\dfrac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{c}-1+\sqrt{a}-1+\sqrt{b}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-3}{\sqrt{abc}+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}=\dfrac{7-3}{3+7-13-1}=-1\)

27 tháng 10 2021

TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24

9 tháng 12 2019

Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

8 tháng 2 2019

Từ giả thiết: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}\)

Xét hạng tử: \(\frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}\)

Từ đó: \(N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}\)

\(=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\)

Mặt khác: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13\)

Suy ra: \(N=\frac{4}{9-13}=-1\). Kết luận: N = -1.

25 tháng 9 2019

Từ giả thiết: \sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}a​+b​+c​=7⇔c​=7−a​−b​

Xét hạng tử: \frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}ab​+c​−61​=ab​+7−a​−b​−61​=(a​−1)(b​−1)1​

Từ đó: N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}N=(a​−1)(b​−1)1​+(b​−1)(c​−1)1​+(c​−1)(a​−1)1​

=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}=(a​−1)(b​−1)(c​−1)a​+b​+c​−3​=abc​−(ab​+bc​+ca​)+(a​+b​+c​)−1a​+b​+c​−3​

=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}=3−(ab​+bc​+ca​)+7−17−3​=9−(ab​+bc​+ca​)4​

Mặt khác: \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13ab​+bc​+ca​=2(a​+b​+c​)2−(a+b+c)​=13

Suy ra: N=\frac{4}{9-13}=-1N=9−134​=−1. Kết luận: N = -1.

6 tháng 4 2022

Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\) \(\Rightarrow xyz=1\)  (x;y;z > 0 do a;b;c>0)

Cần c/m : \(VT=\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}+\dfrac{x^2+y^2}{z}\ge x+y+z+3=VP\) 

Dễ dàng c/m : VT \(\ge2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)   (1)

Thấy : \(\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\)  . CMTT : \(\dfrac{xz}{y}+\dfrac{yz}{x}\ge2z;\dfrac{yz}{x}+\dfrac{xy}{z}\ge2y\)

Suy ra : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge x+y+z\)

Có : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge3\sqrt[3]{xyz}=3\)

Suy ra : \(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\ge x+y+z+3\left(2\right)\)

Từ (1) ; (2) suy ra : \(VT\ge VP\)

" = " \(\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1\)

 

6 tháng 4 2022

Em 2k8 ms học nên k chắc 

NV
27 tháng 12 2020

\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)

\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
17 tháng 5 2021

\(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\Rightarrow\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=3\\0\le x;y;z\le\sqrt{3}\end{matrix}\right.\)

\(P=x^2y+y^2z+z^2x-xyz\)

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Leftrightarrow x^2+yz\le xy+xz\)

\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)

\(\Rightarrow P\le xy^2+z^2x+xyz-xyz=x\left(y^2+z^2\right)=x\left(3-x^2\right)\)

\(\Rightarrow P\le2-\left(x^3-3x+2\right)=2-\left(x-1\right)^2\left(x+2\right)\le2\)

\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(1;0;2\right)\) và một vài hoán vị