Cho \(P\left(x\right)=x^5+ax^4+bx^3+cx^2+dx+e\) Xác định \(P\left(x\right)\) biết \(P\left(x\right)\) chia (x-2) dư 5 , có nghiệm là x=1 ; \(P\left(-1\right)=8\) và \(2a+b+2c+d=0\)
HELP ME....
mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P\left(x\right)=x^5+ax^4+bx^3+cx^2+dx+e\)
Suy ra \(P\left(1\right)=1^5+a\cdot1^4+b\cdot1^3+c\cdot1^2+d\cdot1+e=1\)
\(\Rightarrow a+b+c+d+e=0\)
\(P\left(2\right)=2^5+a\cdot2^4+b\cdot2^3+c\cdot2^2+d\cdot2+e=4\)
\(\Rightarrow16a+8b+4c+2d+e+28=0\)
\(P\left(3\right)=3^5+a\cdot3^4+b\cdot3^3+c\cdot3^2+d\cdot3+e=9\)
\(\Rightarrow81a+27b+9c+3d+e+234=0\)
\(P\left(4\right)=4^5+a\cdot4^4+b\cdot4^3+c\cdot4^2+d\cdot4+e=16\)
\(\Rightarrow256a+64b+16c+4d+e+1008=0\)
\(P\left(5\right)=5^5+a\cdot5^4+b\cdot5^3+c\cdot5^2+d\cdot5+e=25\)
\(\Rightarrow625a+125b+25c+5d+e+999=0\)
Thay lẫn lộn vào nhau đi nhé
Cho phép lm tiếp....
\(\Rightarrow\left\{{}\begin{matrix}15a+7b+3c+d=-28\\80a+26b+8c+2d=-234\\255a+63b+15c+3d=-1008\\624a+124b+24c+4d=-3100\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}50a-12b+2c=-178\\210a+42b+6c=-924\\564a+96b+12c=-2988\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-15\\b=85\\c=-224\end{matrix}\right.\)
Thay bào pt \(15a+7b+3c+d=-28\) ta có: \(-225+595-672+d=-28\Rightarrow d=274\)
Thay vào pt \(a+b+c+d+e=0\) ta có:
\(-15+85-224+274+e=0\Rightarrow e=-120\)
Thay a,b,c,d,e vào r` tính là ra!
p/s: cho a,b,c bấm casio nhé!
\(f\left(x\right)=ax^2+bx+c\)
=> \(f\left(-2\right)=4a-2b+c=-3\)
Có f(x) chia cho x và x + 4 đều dư 5
=> \(\left\{{}\begin{matrix}f\left(0\right)=0+c=5\\f\left(-4\right)=16a-4b+c=5\end{matrix}\right.\)
Ta có hpt:
\(\left\{{}\begin{matrix}4a-2b+c=-3\\c=5\\16a-4b+c=5\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}c=5\\2\left(2a-b\right)=-8\\4\left(4a-b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=4a\\2a-b=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=5\end{matrix}\right.\)
Khi đó \(f\left(x\right)=2x^2+8x+5\)
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)