K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

\(a,\Leftrightarrow y\left(x+1\right)-3\left(x+1\right)=5\\ \Leftrightarrow\left(x+1\right)\left(y-3\right)=5=5.1=\left(-5\right)\left(-1\right)\\ TH_1:\left\{{}\begin{matrix}x+1=1\\y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=8\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x+1=5\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\\ TH_3:\left\{{}\begin{matrix}x+1=-5\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\\ TH_4:\left\{{}\begin{matrix}x+1=-1\\y-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(0;8\right);\left(4;4\right);\left(-6;2\right);\left(-2;-2\right)\right\}\)

\(b,\Leftrightarrow6\left(n-1\right)+11⋮n-1\\ \Leftrightarrow n-1\in\left\{-11;-1;1;11\right\}\\ \Leftrightarrow n\in\left\{-10;0;2;12\right\}\)

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

25 tháng 1 2018

BÀI 1:

a)  \(17.2-17.102\)

\(=17.\left(2-102\right)\)

\(=17.\left(-100\right)\)

\(=-1700\)

b)    \(45-9\left(13+5\right)\)

\(=45-9.13-9.5\)

\(=-9.13=-117\)

25 tháng 1 2018

Baì 1:

a.\(17\times2-17\times102\)

\(=17\left(2-102\right)\)

\(=17\times\left(-100\right)\)

\(=-1700\)

b.\(45-9\left(13+5\right)\)

\(=45-9\times18\)

\(=45-162\)

\(=-117\)

Bài 2: Theo thứ tự giảm dần: \(318;213;112;35;22\)

Bài 3: 

a. \(2x-35=15\)

\(2x=15+35\)

\(2x=50\)

\(x=50\div2\)

\(x=25\)

b.\(15-\left(x-7\right)=-21\)

\(x-7=15-\left(-21\right)\)

\(x-7=36\)

\(x=36+7\)

\(x=43\)

DT
30 tháng 11 2023

Do x, y nguyên

nên : x-2 và y-3 cũng đạt giá trị nguyên

Ta có : 5 = 1.5 = (-1).(-5)

Bảng giá trị :

x-2 1 5 -1 -5
y-3 5 1 -5 -1
x 3 7 1 -3
y 8 4 -2 2

 

Vậy (x;y)=(3;8);(7;4);(1;-2);(-3;2)
 

 

DT
30 tháng 11 2023

Do x, y nguyên

Nên 1-x và y+1 cũng đạt giá trị nguyên

Ta có : 3=1.3=(-1).(-3)

Bảng giá trị :

1-x 1 3 -1 -3
y+1 3 1 -3 -1
x 0 -2 2 4
y 2 0 -4 -2

 Vậy (x;y)=(0;2);(-2;0);(2;-4);(4;-2)

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

21 tháng 12 2023

Bài 1:

Thay \(x\) = 6y vào biểu thức ta có:

|6y| - |y| = 60

|5y| = 60

5.|y| = 60

   |y| = 60 : 5

   |y| = 12

   \(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)

Kết luận:

Các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-72; -12); (72; 12)

10 tháng 4 2022

tham khảo

Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :

P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .

Ta có :

P ( 0 ) chia hết cho 5

⇒ a . 02+ b . 0 + c chia hết cho 5

⇒ c chia hết cho 5

P ( 1 ) chia hết cho 5

⇒ a . 12 + b . 1 + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )

P ( - 1 ) chia hết cho 5

⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5

⇒ 2a chia hết cho 5

Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5

Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5

Vậy a , b , c chia hết cho 5 . ( đpcm )

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

4 tháng 12 2023

thiếu bài 16