K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Sửa đề: \(a^3+b^3+c^3=-1099\)

___________________________________

\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{4}=\frac{b}{6}\)

\(\frac{a}{4}=\frac{c}{9}\)

\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\\ \Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{819}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{819}=\frac{a^3+b^3+c^3}{64+216+819}=\frac{-1099}{1099}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a^3}{64}=-1\\\frac{b^3}{216}=-1\\\frac{c^3}{819}=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3=-64\\b^3=-216\\c^3=-819\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-6\\c=-9\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)=\left(-4;-6;-9\right)\)

16 tháng 11 2016

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}=\frac{a^2-b^2+2c^2}{4-9+2.4^2}=\frac{108}{27}=4=2^2\)

\(\Rightarrow\begin{cases}a^2=2^2.2^2=4^2\\b^2=2^2.3^2=6^2\\c^2=2^2.2.4^2:2=8^2\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)

Vậy giá trị (a;b;c) thỏa mãn đề bài là: (4;6;8) ; (-4;-6;-8)

 

16 tháng 11 2016

Giải:
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow a=2k,b=3k,c=4k\)

Ta có: \(a^2-b^2+2c^2=108\)

\(\Rightarrow\left(2k\right)^2-\left(3k\right)^2+2\left(4k\right)^2=108\)

\(\Rightarrow2^2.k^2-3^2.k^2+2.4^2.k^2=108\)

\(\Rightarrow4.k^2-9.k^2+32.k^2=108\)

\(\Rightarrow\left(4-9+32\right).k^2=108\)

\(\Rightarrow27.k^2=108\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

+) \(k=2\Rightarrow a=4,b=6,d=8\)

+) \(k=-2\Rightarrow a=-4,b=-6,c=-8\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(4;6;8\right);\left(-4;-6;-8\right)\)

23 tháng 3 2016

5(3a-2b)/25=3(2c-5a)/9=2(5b-3c)/4

15a-10b/25=6c-15a/9=10b-6c/4

theo tc dãy tỉ số bằng nhau ta có:

15a-10b/25=6c-15a/9=10b-6c/4

15a-10b+6c-15a+10b-6c/25+9+4  

=0/4

=> 3a-2b/5=2c-5a/3=5b-3c/2=0

=> 3a-2b=5.0=0 => 3a=2b thì a/2=b/3

=> 2c-5a=3.0=0 => 2c=5a thì c/5=a/2

rồi bạn tự giải đi: a/2=b/3=c/5 áp dụng tc dãy tỉ số bằng nhau

23 tháng 3 2016

giúp mình với các bạn ơi

9 tháng 1 2020

ADTC của dãy tỉ số bằng nhau

22 tháng 1 2017

Ta gọi 3 số lần lượt là a , b , c

Theo đề bài ta có :
\(\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\\a^2+b^2+c^2=24309\end{matrix}\right.\)

Ta có \(\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\)

\(\Leftrightarrow\frac{a^2}{\left(\frac{2}{5}\right)^2}=\frac{b^2}{\left(\frac{3}{4}\right)^2}=\frac{c^2}{\left(\frac{1}{6}\right)^2}\)

\(\Leftrightarrow\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}=\frac{a^2+b^2+c^2}{\frac{2701}{3600}}=\frac{24309}{\frac{2701}{3600}}=32400\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\frac{2}{5}}=32400\\\frac{b}{\frac{3}{4}}=32400\\\frac{c}{\frac{1}{6}}=32400\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a=32400.\frac{2}{5}=12960\\b=32400.\frac{3}{4}=24300\\c=32400.\frac{1}{6}=5400\end{matrix}\right.\)

\(\Rightarrow A=12960+24300+5400=42660\)

Vậy số A = 42660

Ta có : a/c=c/b

=> c^2=a.b  (1)

Cm:a/b=a^2+c^2/b^2+c^2  (2)

Từ (1),(2) suy ra :

a^2+c^2/b^2+c^2=a^2+a.b/b^2+a.b=a(a+b)/b(b+a)=a/b

Vậy a/b = a^2+c^2/b^2+c^2 (đpcm)

16 tháng 12 2016

Ta có :

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)

\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0

=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25

18 tháng 12 2016

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)

Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)

Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)

\(\Rightarrow a+b+c+1=3a\)

\(\Rightarrow\frac{1}{2}+1=3a\)

\(\Rightarrow3a=\frac{3}{2}\)

\(\Rightarrow a=\frac{1}{2}\)

Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)

\(\Rightarrow a+b+c+2=3b\)

\(\Rightarrow\frac{1}{2}+2=3b\)

\(\Rightarrow\frac{5}{2}=3b\)

\(\Rightarrow b=\frac{5}{6}\)

Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)

\(\Rightarrow a+b+c-3=3c\)

\(\Rightarrow\frac{1}{2}-3=3c\)

\(\Rightarrow\frac{-5}{2}=3c\)

\(\Rightarrow c=\frac{-5}{6}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)

18 tháng 12 2016

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)

\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)

\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)

\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)

\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)

 

7 tháng 2 2017

Ta có : \(\frac{a}{2}=\frac{b}{3}-->\frac{a}{8}=\frac{b}{12}-->\frac{a^3}{512}=\frac{b^3}{1728}\)

\(\frac{b}{4}=\frac{c}{9}-->\frac{b}{12}=\frac{c}{27}-->\frac{b^3}{1728}=\frac{c^3}{19683}\)\(\left\{\frac{a^3}{512}=\frac{b^3}{1728}=\frac{c^3}{19683}}\)

7 tháng 2 2017

đề có bị nhầm không vậy bạn?hum

18 tháng 2 2019

\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)

mà a,b là số tự nhiên nên \(a,b\ge0\)

nên \(9a+4b\ge0\)

dấu bằng xảy ra khi a=b=0

18 tháng 2 2019

mk làm sai nha bạn

sr bạn

9 tháng 12 2018

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(vì a+b+c khác 0)

\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}\)

\(\frac{b+c+1}{a}=2\Rightarrow2a=b+c+1\Rightarrow3a=a+b+c+1\Rightarrow a=\frac{1}{2}\)

\(\frac{a+c+2}{b}=2\Rightarrow2b=a+c+2\Rightarrow3b=a+b+c+2\Rightarrow b=\frac{5}{6}\)

\(\frac{a+b-3}{c}=2\Rightarrow2c=a+b-3\Rightarrow3c=a+b+c-3\Rightarrow c=-\frac{5}{6}\)

Vậy \(a=\frac{1}{2},b=\frac{5}{6},c=-\frac{5}{6}\)