Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
a,Ta có \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)
\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)
b, Với \(x\ge0;x\ne1\)
\(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)
\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)
Vậy biểu thức ko phụ thuộc biến x
c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên
thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
\(\sqrt{x}\) | 2 | 0 | 3 | -1 |
x | 4 | 0 | 9 | vô lí |
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)
1: \(A=\sqrt{28}+\sqrt{63}-5\sqrt{8-2\sqrt{7}}\)
\(=2\sqrt{7}+3\sqrt{7}-5\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=5\sqrt{7}-5\left(\sqrt{7}-1\right)=5\)
2: a: Thay x=25 vào A, ta được:
\(A=\dfrac{5}{5+2}=\dfrac{5}{7}\)
b: \(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(\sqrt{P}< \dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}P>=0\\P< \dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{4}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}-2>=0\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}-2}{4\left(\sqrt{x}+2\right)}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>=2\\4\sqrt{x}-8-\sqrt{x}-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=4\\3\sqrt{x}< 10\end{matrix}\right.\)
=>\(4< =x< \dfrac{100}{9}\)
Kết hợp ĐKXĐ, ta được: \(4< x< \dfrac{100}{9}\)
mà x là số nguyên nhỏ nhất thỏa mãn
nên x=5