Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)
Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)
ta chứng minh đc \(x^3+y^3\ge xy\left(x+y\right)\)
thay vào + biến đổi ta có đpcm
đẳng thúc xảy ra khi a=b=c
lol!!!
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)
⇒ \(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)
Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)
\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)
⇒ \(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\) với \(x;y;z>0\Rightarrow xyz=1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có: \(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)
\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)
\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)
\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xyz}{yz+z+xyz}+\dfrac{y}{xyz+xy+y}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xy}{y+1+xy}+\dfrac{y}{1+xy+y}\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Ta có: \(x^3+y^{ 3}=\left(x+y\right)\left(x^2-xy+y^2\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy,\forall x,y\ge0\)
Áp dụng:
\(\sum_{cyc}\dfrac{1}{a^3+b^3+abc}\le\sum_{cyc}\dfrac{1}{\left(a+b\right)ab+abc}=\sum_{cyc}\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)
\("="\Leftrightarrow a=b=c\)
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy\)( \(\forall x,y\ge0\) )
Áp dụng: \(\sum\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{\left(a+b\right)ab+abc}=\sum\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)
\("="\Leftrightarrow a=b=c\)
Cách khác:
Ta chứng minh: \(\frac{a}{a^3+a+1}\le\frac{1}{2}.\frac{a^{\frac{2}{3}}+1}{a^{\frac{4}{3}}+a^{\frac{2}{3}}+1}\) (1)
Đặt \(a=x^3\Leftrightarrow\frac{x^3}{x^9+x^3+1}\le\frac{1}{2}.\frac{x^2+1}{x^4+x^2+1}\)
Tương đương với $$\frac{(x - 1)^2 (x^9 + 2 x^8 + 4 x^7 + 6 x^6 + 6 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)}{2 (x^2 - x + 1) (x^2 + x + 1) (x^9 + x^3 + 1)} \geq 0$$
Vậy (1) đúng. Thiết lập $3$ bất đẳng thức tương tự và cộng theo vế thu đượcVasc.
\(\Rightarrow\) $\text{đpcm}$
Đẳng thức xảy ra khi $a=b=c=1$
Lời giải:
Xét hiệu: $a^3+1-a(a+1)=a^2(a-1)-(a-1)=(a+1)(a-1)^2\geq 0$ với mọi $a>0$
$\Rightarrow a^3+1\geq a(a+1)\Rightarrow a^3+a+1\geq a(a+2)$
$\Rightarrow \frac{a}{a^3+a+1}\leq \frac{1}{a+2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
$\sum \frac{a}{a^3+a+1}\leq \sum \frac{1}{a+2}(*)$
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$
Khi đó, áp dụng BĐT Cauchy-Schwarz:
$\sum \frac{1}{a+2}=\sum \frac{yz}{x^2+2yz}=\frac{1}{2}\sum (1-\frac{x^2}{x^2+2yz})=\frac{3}{2}-\frac{1}{2}.\sum \frac{x^2}{x^2+2yz}\leq \frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}$
$=\frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{(x+y+z)^2}=1(**)$
Từ $(*); (**)$ ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
\(\dfrac{1}{a^3+b^3+abc}=\dfrac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+abc}\le\dfrac{1}{\left(a+b\right)\left(2ab-ab\right)+abc}=\dfrac{1}{ab\left(a+b\right)+abc}=\dfrac{1}{ab\left(a+b+c\right)}\)
tương tự với các hạng tử còn lại, ta được
\(Vetrai\le\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\left(\dfrac{1}{a+b+c}\right)=\dfrac{a+b+c}{abc}\cdot\dfrac{1}{a+b+c}=\dfrac{1}{abc}\)
dấu bằng xảy ra khi a=b=c