K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Cách khác:

Ta chứng minh: \(\frac{a}{a^3+a+1}\le\frac{1}{2}.\frac{a^{\frac{2}{3}}+1}{a^{\frac{4}{3}}+a^{\frac{2}{3}}+1}\) (1)

Đặt \(a=x^3\Leftrightarrow\frac{x^3}{x^9+x^3+1}\le\frac{1}{2}.\frac{x^2+1}{x^4+x^2+1}\)

Tương đương với $$\frac{(x - 1)^2 (x^9 + 2 x^8 + 4 x^7 + 6 x^6 + 6 x^5 + 6 x^4 + 5 x^3 + 4 x^2 + 2 x + 1)}{2 (x^2 - x + 1) (x^2 + x + 1) (x^9 + x^3 + 1)} \geq 0$$

Vậy (1) đúng. Thiết lập $3$ bất đẳng thức tương tự và cộng theo vế thu đượcVasc.

\(\Rightarrow\) $\text{đpcm}$

Đẳng thức xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
4 tháng 7 2020

Lời giải:
Xét hiệu: $a^3+1-a(a+1)=a^2(a-1)-(a-1)=(a+1)(a-1)^2\geq 0$ với mọi $a>0$

$\Rightarrow a^3+1\geq a(a+1)\Rightarrow a^3+a+1\geq a(a+2)$

$\Rightarrow \frac{a}{a^3+a+1}\leq \frac{1}{a+2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

$\sum \frac{a}{a^3+a+1}\leq \sum \frac{1}{a+2}(*)$

Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$

Khi đó, áp dụng BĐT Cauchy-Schwarz:

$\sum \frac{1}{a+2}=\sum \frac{yz}{x^2+2yz}=\frac{1}{2}\sum (1-\frac{x^2}{x^2+2yz})=\frac{3}{2}-\frac{1}{2}.\sum \frac{x^2}{x^2+2yz}\leq \frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}$

$=\frac{3}{2}-\frac{1}{2}.\frac{(x+y+z)^2}{(x+y+z)^2}=1(**)$

Từ $(*); (**)$ ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

NV
31 tháng 8 2021

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

1 tháng 9 2021

là c\(^4\) ạ

 

28 tháng 5 2022

28 tháng 5 2022

16 tháng 1 2019

Mình có cách này,không chắc lắm:

\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)

\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)

\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)

\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

Áp dụng BĐT Cô si với biểu thức trong ngoặc:

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

17 tháng 1 2019

Ta c/m bđt sau: 

\(a^3+1\ge a^2+a\)

\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)

\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)

\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)

\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu bằng xảy ra khi a=b=c=1

NV
5 tháng 8 2021

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

5 tháng 8 2021

e cảm ơn ạ

 

NV
3 tháng 11 2021

\(1-\dfrac{1}{1+a}\ge\dfrac{2017}{b+2017}+\dfrac{2018}{c+2018}\ge2\sqrt{\dfrac{2017.2018}{\left(b+2017\right)\left(c+2018\right)}}\)

\(1-\dfrac{2017}{b+2017}\ge\dfrac{1}{1+a}+\dfrac{2018}{b+2018}\ge2\sqrt{\dfrac{2018}{\left(1+a\right)\left(b+2018\right)}}\)

\(1-\dfrac{2018}{c+2018}\ge\dfrac{1}{1+a}+\dfrac{2017}{b+2017}\ge2\sqrt{\dfrac{2017}{\left(1+a\right)\left(b+2017\right)}}\)

Nhân vế:

\(\dfrac{abc}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\ge\dfrac{8.2017.2018}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\)

\(\Rightarrow abc\ge8.2017.2018\)

NV
3 tháng 11 2021

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2.1;2.2017;2.2018\right)=...\)