Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ C kẻ CD vuông góc với AB
Ta có: \(AD = CK - AH = 32 - 6 = 26\left( m \right)\)
\(\begin{array}{l}AB = BH - AH = 24 - 6 = 18\left( m \right)\\DB = AD - AB = 26 - 18 = 8\left( m \right)\end{array}\)
\(CD = HK = 20m\)
Ta có: \(\tan DCB = \frac{{DB}}{{CD}} = \frac{8}{{20}} = \frac{2}{5}\)
\(\tan DCA = \frac{{DA}}{{DC}} = \frac{{26}}{{20}} = \frac{{13}}{{10}}\)
\[\begin{array}{l}\tan BCA = \tan \left( {DCA - DCB} \right) = \frac{{\tan DCA - \tan DCB}}{{1 + \tan DCA.\tan DCB}} = \frac{{\frac{{13}}{{10}} - \frac{2}{5}}}{{1 + \frac{{13}}{{10}}.\frac{2}{5}}} = \frac{{45}}{{76}}\\ \Rightarrow \widehat {ACB} \approx 30,6^\circ \end{array}\]
Ak là biến cố: "Người thứ k bắn trúng"
- A1 : "Người thứ nhất bắn trúng"
⇒ : “Người thứ nhất không bắn trúng”.
- A2 : "Người thứ hai bắn trúng"
⇒ : “Người thứ hai không bắn trúng”.
Cây cao nhất với kiểu gene AABB có chiều cao là: \(100+5\cdot4=120\left(cm\right)\)
a) Ta có:
⇒ Ax // (Cz,Dt)
Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)
Tương tự ta có (Ax, Dt) // (By,Cz)
b)
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra
Tương tự ta có:
Tận dụng kết quả giao tuyến của một mặt phẳng với hai mặt phẳng song song là hai đường thẳng song song, ta có tứ giác A’B’C’D’ là hình bình hành.
Đáp án D.
Số cách chọn là . Kí hiệu A k là biến cố: "Trong hai ngườiđã chọn, có đúng k nữ", k = 0, 1, 2
a) Cần tính P ( A 2 ) .
Ta có:
b) Tương tự
a) Giả sử (A’B’C’) ∩ d = D’
⇒ (A’B’C’) ∩ (C’CD) = C’D’.
+ AA’ // CC’ ⊂ (C’CD)
⇒ AA’ // (C’CD).
AB // CD ⊂ (CC’D)
⇒ AB // (CC’D)
(AA’B’B) có:
⇒ (AA’B’B) // (C’CD).
Mà (A’B’C’) ∩ (AA’B’B) = A’B’
⇒ (A’B’C’) cắt (C’CD) và giao tuyến song song với A’B’
⇒ C’D’ // A’B’.
b) Chứng minh tương tự phần a ta có B’C’ // A’D’.
Tứ giác A’B’C’D’ có: B’C’ // A’D’ và C’D’ // A’B’
⇒ A’B’C’D’ là hình bình hành.
Ta giả sử
TH1 : Chỉ có B nói sai ,
Ta thấy B,D không thể cùng là người thấp nhất
=> Loại
TH2 : Chỉ có C nói sai
Khi đó , sẽ có 2 khả năng xảy ra: hoặc C và A là người cao nhất , hoặc C và D là người thấp nhất (vô lý)
=> Loại
TH3 : Chỉ có D nói sai
Khi đó D cao hơn B hoặc C , mặt khác lời của B và C trong TH này là đúng nên khi D nói sai ta không thể tìm được người thấp nhất
=> Loại
TH4 : Chỉ có A nói sai
Khi đó ta dễ thấy A cao hơn C và D , do A không là người cao nhất nên người cao nhất là B
Vậy chỉ có TH4 là thỏa mãn yêu cầu bài toán
=> D là người thấp nhất , A là người nói sai , Chiều cao 4 bạn chiều giảm dần là B,A,C,D