K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

Do $(2023-x)^2\geq 0$ với mọi $x$ nên:

$3(y-3)^2=16-(2023-x)^2\leq 16<18$

$\Rightarrow (y-3)^2< 6$

Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.

$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$

Nếu $(y-3)^2=0$ thì $y=3$.

Khi đó: $(2023-x)^2=16-3.0^2=16$

$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$

$\Rightarrow x=2019$ hoặc $x=2027$

Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$

$\Rightarrow y=5$ hoặc $y=1$
Khi đó:

$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$

$\Rightarrow x=2021$ hoặc $x=2025$

29 tháng 3 2023

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

29 tháng 3 2023

giup mik nhiều quá hihi

Do (2023x)20(2023−�)2≥0 với mọi x nên:

3(y3)2=16(2023x)216<183(�−3)2=16−(2023−�)2≤16<18

(y3)2<6⇒(�−3)2<6

Mà (y3)20(�−3)2≥0 và (y3)2(�−3)2 là số chính phương với mọi y nguyên.

(y3)2=0⇒(�−3)2=0 hoặc (y3)2=4(�−3)2=4

Nếu (y3)2=0(�−3)2=0 thì y=3�=3.

Khi đó: (2023x)2=163.02=16(2023−�)2=16−3.02=16

2023x=4⇒2023−�=4 hoặc 2023x=42023−�=−4

x=2019⇒�=2019 hoặc x=2027�=2027

Nếu (y3)2=4y3=2(�−3)2=4⇒�−3=2 hoặc y3=2�−3=−2

y=5⇒�=5 hoặc y=1�=1
Khi đó:

(2023x)2=163.4=4=22=(2)2(2023−�)2=16−3.4=4=22=(−2)2
2023x=2⇒2023−�=2 hoặc 2023x=22023−�=−2

x=2021⇒�=2021 hoặc x=2025

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12

2 tháng 1 2021

WTF!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

6 tháng 1 2021

.................................................................................................... điền số 0