Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)
Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2
\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2
Vậy pt có nghiệm (x;y)=(6;0)
Vì x là số dương nên ta Giả sử \(\hept{\begin{cases}x^2=a\\\frac{2}{x}=b\end{cases}}\) với a,b là hai số tự nhiên
Vậy \(x=\frac{2}{b}\Rightarrow x^2=\frac{4}{b^2}=a\Leftrightarrow4=ab^2\)
Do b là số tự nhiên nên \(\orbr{\begin{cases}b=1\Rightarrow a=4\\b=2\Rightarrow a=1\end{cases}}\) vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
câu 2a) xét (x-1)2> hoặc = 0
(x-1)2+(y+1)2> hoặc bằng 0
(x-1)2+(y+1)2+3> hoặc =3
=> GTNN của biểu thức trên là 3
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Nhớ like cho mình nha ^^
Lời giải:
Do $(2023-x)^2\geq 0$ với mọi $x$ nên:
$3(y-3)^2=16-(2023-x)^2\leq 16<18$
$\Rightarrow (y-3)^2< 6$
Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.
$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$
Nếu $(y-3)^2=0$ thì $y=3$.
Khi đó: $(2023-x)^2=16-3.0^2=16$
$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$
$\Rightarrow x=2019$ hoặc $x=2027$
Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$
$\Rightarrow y=5$ hoặc $y=1$
Khi đó:
$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$
$\Rightarrow x=2021$ hoặc $x=2025$