K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)

Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2

\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2 

Vậy pt có nghiệm (x;y)=(6;0)

10 tháng 4 2019

cảm ơn bạn nha

30 tháng 4 2017

x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0

x2 + 2x2y2 + 2y2 - x2y2 - 2x2 - 2 = 0

x2y2 + 2y2 - x2 - 2 = 0

y2.(x2 + 2) - (x2 + 2) = 0

(y2 - 1)(x2 + 2) = 0

Ta có : x2 + 2 \(\ge\) 0

Nên  \(\orbr{\begin{cases}y^2-1=0\\x^2+2=0\end{cases}\Rightarrow\orbr{\begin{cases}y=\left(1;-1\right)\\x\in R\end{cases}}}\)

2 tháng 3 2019

\(x^2+4x+2019\) là số chính phương nên có dạng \(t^2\)

\(\Rightarrow x^2+4x+2019=t^2\)

\(\Rightarrow x^2+4x+4+2015-t^2=0\)

\(\Rightarrow\left(x+2+t\right)\left(x+2-t\right)=-2015\)

Xét ước :V

NM
15 tháng 8 2021

Vì x là số dương nên ta Giả sử \(\hept{\begin{cases}x^2=a\\\frac{2}{x}=b\end{cases}}\) với a,b là hai số tự nhiên

Vậy \(x=\frac{2}{b}\Rightarrow x^2=\frac{4}{b^2}=a\Leftrightarrow4=ab^2\)

Do b là số tự nhiên nên \(\orbr{\begin{cases}b=1\Rightarrow a=4\\b=2\Rightarrow a=1\end{cases}}\) vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

30 tháng 4 2017

<=> x+ 2x2y2 + 2y2 - x2y+ 2x- 2 = 0

<=> -x+ x2y2 + 2y2 - 2 = 0

<=> x2 (y2 - 1) + 2 (y2 - 1) = 0

<=> (x+ 2)(y2 - 1) = 0

Vì x2 \(\ge\)0 với mọi x => y2 - 1 = 0 <=> y = -1 và y = 1.

Vậy x \(\in\)R , y = {-1;1}

30 tháng 4 2017

bạn đợi mình xíu nha!!