K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

\(x^2+4x+2019\) là số chính phương nên có dạng \(t^2\)

\(\Rightarrow x^2+4x+2019=t^2\)

\(\Rightarrow x^2+4x+4+2015-t^2=0\)

\(\Rightarrow\left(x+2+t\right)\left(x+2-t\right)=-2015\)

Xét ước :V

3 tháng 8 2017

Theo đề bài, ta có:

\(\frac{2}{3}x^2-2=\frac{2}{3}\)

\(\frac{2}{3}x^2=\frac{2}{3}+2\)

\(\frac{2}{3}x^2=\frac{8}{3}\)

\(x^2=\frac{8}{3}\div\frac{2}{3}\)

\(x^2=4\)

\(x=\text{±}2\)

9 tháng 4 2019

\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)

Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2

\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2 

Vậy pt có nghiệm (x;y)=(6;0)

10 tháng 4 2019

cảm ơn bạn nha

2 tháng 12 2016

\(a^{\left(x-2\right)\left(x-3\right)}=1\)

\(\Rightarrow a^{\left(x-2\right)\left(x-3\right)}=a^0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow x-2=0\) hoặc \(x-3=0\)

+) \(x-2=0\Rightarrow x=2\)

+) \(x-3=0\Rightarrow x=3\)

Vậy \(x\in\left\{2;3\right\}\)

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài