Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M là số nguyên
Thì (x2–5) chia hết cho (x2–2)
==>(x2–2–3) chia hết cho (x2–2)
==>[(x2–2)—3] chia hết cho (x2–2)
Vì (x2–2) chia hết cho (x2–2)
Nên 3 chia hết cho (x2–2)
==> (x2–2)€ Ư(3)
==> (x2–2) €{1;-1;3;-3}
TH1: x2–2=1
x2=1+2
x2=3
==> ko tìm được giá trị của x
TH2: x2–2=-1
x2=-1+2
x2=1
12=1
==>x=1
TH3: x2–2=3
x2=3+2
x2=5
==> không tìm được giá trị của x
TH4: x2–2=-3
x2=-3+2
x2=-1
(-1)2=1
==> x=-1
Vậy x € {1;—1)
A) \(\left(\frac{1}{3}\right)^{^2}.\frac{1}{3}.9^2=3=3^1\)(viết dưới dạng lũy thừa)
B)\(8< 2^n< 2.16\)
\(2^3< 2^n< 2.2^4\)
\(2^3< 2^n< 2^5\)
\(\Rightarrow3< n< 5\)
mà n là số tự nhiên => n = 4
C) |-x| = 1 => |x| = 1 => x = -1 hoặc x = 1.
|2x| = 6.7 + (-3,3) - 0.4 = 42 - 3,3 - 0 = 42 - 3,3 = 38,7
=> 2x = 38,7 hoặc 2x = -38,7
=> x = 19,35 hoặc x = -19,35
ĐKXĐ : 2x \(\ge\)0 <=> x \(\ge\)0
| 7 + x | = 2x <=> \(\orbr{\begin{cases}7+x=2x\\7+x=-2x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=\frac{-7}{3}\end{cases}}\)( KTMĐK)
Vậy x = 7
Xy=2(x+y)
<=> (xy-2x)-(2y-4)=4
<=>x(y-2)-2(y-2)=4
<=>(X-2)(y-2)=4=1.4=2.2
Có x,y là số nguyên dương nên x-2,y-2 là số nguyên dương lớn hơn hoặc bằng-2 nên ta có
Th1: x-2=1,y-2=4
=> X=3,y=6.
Th2: x-2=4,y-2=1
=> X=6,y=3.
Th3: x-2=y-2=2
=> X=y=4.
1/4×2/6×3/8×4/10×...×14/30×15/32=1/2^x
<=>1/(2×2)×2/(2×3)×...×14/(2×15)×15/2^5=1/2^x
<=>1/2×1/2×...×1/2×1/(2^5)=1/2^x
<=>1/2^19=1/2^x=>x=19
Đề mình không ghi lại nhé.
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{4\times6\times10\times...\times30\times32}=\frac{1}{2^x}\)\(\frac{1}{2^x}\)
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{2\times4\times6\times8\times10\times...\times30\times32}\)\(=\frac{1}{2^{x+1}}\)
\(\Rightarrow\frac{1}{2^{15}\times32}=\)\(\frac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}\times2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy \(x=1\)
Học tốt nhaaa!
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
Minh Ánh lm sai òi
a) \(x^{16}=x^3\cdot x^{13}\)
b) \(x^{16}=\left(x^4\right)^4\)
c) \(x^{16}=x^{18}:x^2\)