K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

\(2S=2+2^2+2^3+2^{2018}\)

\(2S-S=2+2^2+2^3+...+2^{2018}-\left(1+2+2^2+...+2^{2017}\right)\)

\(S=2^{2018}-1\)

11 tháng 10 2023

`S=1+2+2^2+2^3+..+2^2017`

`2S=2+2^2+2^3+2^4+...+2^2018`

`2S-S=(2+2^2+2^3+2^4+...+2^2018)-(1+2+2^2+2^3+...+2^2017)`

`S=2^2018-1`

26 tháng 7 2023

\(S=1+2+...+2^{2017}\)

\(2S=2+2^2+...+2^{2018}\)

\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)

\(S=2^{2018}-1\)

\(S=3+3^2+...+3^{2017}\)

\(3S=3^2+3^3+...+3^{2018}\)

\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)

\(2S=3^{2018}-3\)

\(S=\dfrac{3^{2018}-3}{2}\)

\(S=4+4^2+...+4^{2017}\)

\(4S=4^2+4^3+...+4^{2018}\)

\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)

\(3S=4^{2018}-4\)

\(S=\dfrac{4^{2018}-4}{3}\)

\(S=5+5^2+...+5^{2017}\)

\(5S=5^2+5^3+...+5^{2018}\)

\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(4S=5^{2018}-5\)

\(S=\dfrac{5^{2018}-5}{4}\)

a) S=1+2+22+...+22017

=> 2S=2.(1+2+22+...+22017)

=>2S=2+22+23+...+22018

=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )

=> S =22018-1

 

21 tháng 10 2016

S=1018585

27 tháng 9 2019

\(S=1+2+2^2+...+2^{2017}\)

\(2S=2+2^2+2^3+...+2^{2018}\)

\(S=2^{2018}-1\)

\(S=3+3^2+3^3+...+3^{2017}\)

\(3S=3^2+3^3+3^4+...+3^{2018}\)

\(2S=3^{2018}-1\)

\(S=\frac{3^{2018}-1}{2}\)

2 cái còn lại tương tự

27 tháng 9 2019

S= 1 + 2 + 22 + 23 + ..........+ 22017

2S = 2 + 22 + 23 + 24..........+ 22017 + 22018

Trừ hai vế ta được :

S = 1 + 22018

Vậy S= 1 + 22018

S= 3 + 32 + 33 + ..........+ 32017

3S= 32 + 33 + 34..........+ 32017 + 32018 + 32019 + 32020

Trừ hai vế đi ta được:

S= 3 + 32018 + 32019 + 32020

S= 36057

Các phần sao làm tương tự

Giải:

\(S=\dfrac{1}{2}+\dfrac{2}{2^2}+...+\dfrac{n}{2^n}+...+\dfrac{2017}{2^{2017}}\) 

Với \(n>2\) thì \(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

Ta có:

\(\dfrac{n+1}{2^{n-1}}=\dfrac{n+1}{2^n:2}=\dfrac{2.\left(n+1\right)}{2^n}\) 

\(\Rightarrow\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)}{2^n}-\dfrac{n+2}{2^n}\) 

\(=\dfrac{2.\left(n+1\right)-n-2}{2^n}\) 

\(=\dfrac{n}{2^n}\) 

  \(\Leftrightarrow S=\dfrac{1}{2}+\left(\dfrac{2+1}{2^{2-1}}-\dfrac{2+2}{2^2}\right)+...+\left(\dfrac{2016+1}{2^{2015}}-\dfrac{2018}{2^{2016}}\right)+\left(\dfrac{2017+1}{2^{2016}}-\dfrac{2019}{2^{2017}}\right)\)

\(S=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{2019}{2017}\) 

\(S=2-\dfrac{2019}{2017}\)  

\(\Leftrightarrow S=2-\dfrac{2019}{2017}< 2\) 

Hay \(S< 2\)

14 tháng 6 2021

Cảm ơn bạn ^-^