K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

Để chứng minh điều này, ta có thể sử dụng các bước sau:

  • Chứng minh tam giác BAD cân tại B (vì BD = BA) và tam giác BAN cân tại B (vì BM là phân giác của góc A).
  • Chứng minh góc BAD = góc BAN (vì hai tam giác cân trên có hai góc ở đáy bằng nhau).
  • Chứng minh góc HAD = góc NAD (vì AN vuông góc với BD).
  • Chứng minh tam giác HAD đồng dạng với tam giác NAD (vì hai tam giác có hai góc bằng nhau).
  • Chứng minh DH/DA = NA/ND (vì hai tam giác đồng dạng trên có tỉ số các cạnh tương ứng bằng nhau).
  • Chứng minh DH/DA = AC/AB (vì NA/ND = AC/AB theo định lí Thales).
  • Chứng minh DH song song với AC (vì hai đoạn thẳng có tỉ số các cạnh tương ứng bằng nhau).

Vậy ta đã chứng minh được DH song song với AC.

6 tháng 5 2018

a) Chú ý tam giác ABD cân tại B nên BM là đường phân giác cũng là đường cao, từ đó  B M ⊥ A D .

b) Chú ý AK, BM, DH là ba đường cao của tam giác AMD.

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

a: Xét ΔMAC có 

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMAC cân tại M

=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=180^0-2\cdot\widehat{ACB}\left(1\right)\)

ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMC}=\widehat{BAC}\)

b:

ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

 \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

=>\(\widehat{ABM}=180^0-\widehat{ABC}=180^0-\widehat{ACB}\left(3\right)\)

\(\widehat{CAN}+\widehat{CAM}=180^0\)(hai góc kề bù)

=>\(\widehat{CAN}+\widehat{ACB}=180^0\)

=>\(\widehat{CAN}=180^0-\widehat{ACB}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ABM}=\widehat{CAN}\)

Xét ΔABM và ΔCAN có

AB=CA

\(\widehat{ABM}=\widehat{CAN}\)

BM=AN

Do đó;ΔABM=ΔCAN

c: ΔABM=ΔCAN

=>NC=MA

mà MA=MC

nên NC=MC

\(\widehat{AMC}=\widehat{BAC}\)

mà \(\widehat{BAC}=45^0\)

nên \(\widehat{AMC}=45^0\)

Xét ΔCMN có CM=CN và \(\widehat{CMN}=45^0\)

nên ΔCMN vuông cân tại C

2 tháng 12 2018

a, Xét tam giác BAD và tam giác BKD có :

                                                     BD : cạnh chung 

                                                     BA = BK

                                                     Góc ABD = Góc DBK

==> Tam giác ABD = Tam giác KBD ( C - G - C )

==> AD = DK ( đpcm )

b, Xét tam giác ADE và tam giác KDC có :

                                                     AD = DK

                                                     Góc ADE = Góc KDC

                                                     Góc DAE = Góc DKC

==> Tam giác ADE = Tam giác KDC ( G - C - G )

c, Xét tam giác BAM và tam giác BKM có :

                                                     BM : cạnh chung 

                                                     BA = BK

                                                     Góc ABM = Góc MBK

==> Tam giác ABM = Tam giác KBM ( C - G - C )

==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ

==> Góc BMA = Góc BMK = 90 độ

==> AK vuông góc với BD

Ta có hình vẽ

Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g

Gợi ý:

a)    trước tiên ta xét Tam giác chứa cạnh AD và DK

Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ

b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)

a) Xét ΔABD vuông tại A và ΔIBD vuông tại I có

BD chung

\(\widehat{ABD}=\widehat{IBD}\)(BD là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABD=ΔIBD(cạnh huyền-góc nhọn)

Suy ra: DA=DI(hai cạnh tương ứng)

mà DI<DC(ΔDIC vuông tại I)

nên DA<DC