Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Câu hỏi của nguyễn thùy linh - Toán lớp 6 - Học toán với OnlineMath
nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
â) Gọi \(d=ƯCLN\left(4n-13;5n-16\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-13⋮d\\5n-16⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20n-65⋮d\\20n-64⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(4n-13;5n-16\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{4n-13}{5n-16}\) tối giản với mọi n
b) Gọi \(d=ƯCLN\left(5n-13;3n-8\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}5n-13⋮d\\3n-8⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15n-39⋮d\\15n-40⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(5n-13;3n-8\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{5n-13}{3n-8}\) tối giản với mọi n
a) \(\dfrac{4n-13}{5n-16}\)
Đặt \(d=ƯCLN\left(4n-13;5n-16\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-13⋮d\\5n-16⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\left(4n-13\right)⋮d\\4\left(5n-16\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20n-65⋮d\\20n-64⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(20n-65\right)-\left(20n-64\right)⋮d\)
\(\Leftrightarrow20n-65-20n+64⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d=\left\{1;-1\right\}\)
Vậy phân số \(\dfrac{4n-13}{5n-16}\) là phân số tối giản.
do n ∈ N gía trị nhỏ nhất
mà để 20n+13/4n+3 có giá trị nhỏ nhất và 20n>4n <=> n≠0 và 13> 3
=> n=0
A =m+4n
B =10m+n
10A - B = 10m +40n -10m -n =39n chia hết cho 13
+Nếu A =m+4n chia hết cho 13 => 10A chia hết cho 13
=> B chia hết cho 13 ( tính chất chia hết của 1 tổng)
+Nếu B = 10m +n chia hết cho 13 => 10A chia hết cho 13 ; vì 10 không chia hết cho 13 => A chia hết cho 13
Vậy A chia hết cho 13 \(\Leftrightarrow\) B chia hết cho 13
Gọi m+4n là x;10m+n la y
3x+y=3(m+4n)+10m+n=(3m+12n+10m+n)=(13m+13n) chia hết cho 13
Mà 3x chia hết cho 13
=>y chia hết cho 13
Vậy nếu m+4n chia hết cho 13 suy ra 10m+n chia hết cho 13 với mọi n,m thuộc N
Nếu m+4n \(⋮\) 13 thì: 3.(m+4n) \(⋮\) 13
\(\Leftrightarrow3m+12n⋮13\)
Lại có: (3m+12n)+(10m+n) = 13m+13n =13(m+n) \(⋮\) 13
Vì: \(\left\{{}\begin{matrix}\left(3m+12n\right)+\left(10m+n\right)⋮13\\3m+12n⋮13\end{matrix}\right.\)\(\Rightarrow10m+n⋮13\)
Vậy: nếu m+4n \(⋮\) 13 thì: 10m+n \(⋮\) 13 ( đpcm)