K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

x-y-z=0

=> x=y+z

     y=x-z

    -z=y-x

B=(1-z/x)(1-x/y)(1+y/z)

B=((x-z)/x)((y-x)/y)((z+y)/z)

B=(y/x)(-z/y)(x/z)

B=(-z.y.x)/(x.y.z)

B=-1

20 tháng 3 2016

x+y+z=0

=>x+y=-z

=>y+z=-x

=>z+x=-y

(1+x/y)(1+y/z)(1+z/x)

(y+x/y)(z+y/z)(x+z/x)

-z/y.-x/z.-y/x

=-1

31 tháng 10 2015

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{5}\)

\(\Rightarrow A=\frac{x+y+z}{a+b+c}=\frac{5}{1}=5\)

Vậy A = 5

21 tháng 10 2018

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)

Do x, y, z \(\ne\)\(\Rightarrow\frac{x+y+z}{y+z+x}=1\)

                          \(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)

Vậy.............

21 tháng 10 2018

Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)

Do đó x, y, z khác 0

Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)

\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)

=> y = 0 hoặc y - z = 0

Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z

Thay x = y = z vào A ta có:

\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)

30 tháng 9 2016

quá đễ