Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
\(=23+2\left(xy+yz+zx\right)=49\Rightarrow xy+yz+zx=13\)
rồi bn có gắn qui đồng nó thế vào là o ke :( mk qui vài mà nó dài quá thôi bỏ luôn
câu này nằm trong đề thành phố của tỉnh nào đó hem nhớ nx Tuấn ml ạ
\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)
\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)
Khi \(x=y=z=1\)
(x+y+z)(xy+yz+zx)=xyz
x2y+xyz+zx2+xy2+y2z+xyz+xyz+yz2+z2x=xyz
(x2y+xy2)+(xyz+zx2)+(y2z+xyz)+(yz2+z2x)+xyz=xyz
xy(x+y)+zx(y+x)+yz(y+x)+z2(y+x)+xyz=xyz
(x+y)(xy+xz+yz+z2)+xyz=xyz
(x+y)[(xy+xz)+(yz+z2)]+xyz=xyz
(x+y)[x(y+z)+z(y+z)]+xyz=xyz
(x+y)(x+z)(y+z)+xyz=xyz
(x+y)(x+z)(y+z)=xyz-xyz
(x+y)(x+z)(y+z)=0
=>\(\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\x=-z\\y=-z\end{matrix}\right.\)
Với x=-z
=>VT= x2015+y2015+z2015=(-z)2015+z2015+y2015=y2015
VP=(x+y+z)2015=(-z+y+z)2015=y2015
Vậy x2015+y2015+z2015=(x+y+z)2015 với (x+y+z)(xy+yz+zx)=xyz
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
cũng dễ thôi
M=\(\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)
\(M=\dfrac{z}{z\left(1+x+xy\right)}+\dfrac{xz}{xz\left(1+y+yz\right)}+\dfrac{xyz}{xyz\left(1+z+zx\right)}\\ =\dfrac{z}{z+xz+xyz}+\dfrac{xz}{xz+xyz+xyz\left(z\right)}+\dfrac{xyz}{xyz+xyz\left(z\right)+xyz\left(xz\right)}\\ màxyz=1\\ nênM=\dfrac{z}{z+xz+1}+\dfrac{xz}{z+xz+1}+\dfrac{1}{z+xz+1}\\ vậyM=\dfrac{z+xz+1}{z+xz+1}=1\)
\(\frac{1}{x+y+z}+\frac{1}{3}=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge\frac{2}{\sqrt{3xyz\left(x+y+z\right)}}\ge\frac{2}{xy+yz+zx}\)
Dấu "=" xảy ra khi \(x=y=z=1\)