K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Đáp án D

Hàm số đã cho tuần hoàn với chu kỳ 2 π  và kết hợp với các phương án đề bài thì ta sẽ xét sự biến thiên của hàm số trên  (-π/2; 3π/2)

Ta có hàm số y = sin x

* Đồng biến trên khoảng (-π/2; π/2)

* Nghịch biến trên khoảng (π/2; 3π/2)

Từ đây suy ra hàm số y = 1 - sinx

* Nghịch biến trên khoảng (-π/2; π/2)

* Đồng biến trên khoảng (π/2; 3π/2)

23 tháng 3 2018

Đáp án D

7 tháng 1 2019

Chọn D

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Đáp án D.

25 tháng 10 2021

Cô giải thích sao lại ra D đi ạ

14 tháng 4 2017

12 tháng 11 2018

Đáp án đúng : A

17 tháng 9 2019

Đáp án đúng : B

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi  - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)

Hàm số đồng biến là: \(log_{\pi}x\)

Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)