K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

16 tháng 4 2017

9 tháng 4 2017

Đáp án đúng : B

21 tháng 5 2017

Đáp án đúng : C

13 tháng 3 2019

Đáp án đúng : A

12 tháng 11 2023

a: ĐKXĐ: x<>m

=>TXĐ: D=R\{m}

\(y=\dfrac{mx-2m-3}{x-m}\)

=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)

=>\(-m^2+2m+3>0\)

=>\(m^2-2m-3< 0\)

=>(m-3)(m+1)<0

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)

=>-1<m<3

b: TXĐ: D=R\{m}

\(y=\dfrac{mx-4}{x-m}\)

=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)

=>\(-m^2+4>0\)

=>\(-m^2>-4\)

=>\(m^2< 4\)

=>-2<m<2

12 tháng 11 2023

a: ĐKXĐ: x<>-m

=>TXĐ: D=R\{-m}

\(y=\dfrac{mx-2m+15}{x+m}\)

=>\(y'=\dfrac{\left(mx-2m+15\right)'\left(x+m\right)-\left(mx-2m+15\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx+2m-15}{\left(x+m\right)^2}\)

\(=\dfrac{m^2+2m-15}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định là \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{m^2+2m-15}{\left(x+m\right)^2}>0\)

=>\(m^2+2m-15>0\)

=>(m+5)(m-3)>0

TH1: \(\left\{{}\begin{matrix}m+5>0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m>-5\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m+5< 0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -5\\m< 3\end{matrix}\right.\)

=>m<-5

b: TXĐ: D=R\{-m}

\(y=\dfrac{mx+4m}{x+m}\)

=>\(y'=\dfrac{\left(mx+4m\right)'\left(x+m\right)-\left(mx+4m\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx-4m}{\left(x+m\right)^2}\)

\(=\dfrac{mx+m^2-mx-4m}{\left(x+m\right)^2}=\dfrac{m^2-4m}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m^2-4m}{\left(x+m\right)^2}>0\)

=>\(m^2-4m>0\)

=>\(m\left(m-4\right)>0\)

TH1: \(\left\{{}\begin{matrix}m>0\\m-4>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\)

=>m>4

TH2: \(\left\{{}\begin{matrix}m< 0\\m-4< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< 0\\m< 4\end{matrix}\right.\)

=>m<0