K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Đáp án D

1 tháng 3 2019

Đáp án A

20 tháng 9 2019

Đáp án B

+ Xét hàm y = f(x) = cos (x + π)          

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-x + π) = -cos x = cos (x + π) = f(x)

Do đó y = cos (x + π) là hàm số chẵn .

+ Xét hàm y = g(x) = tan2016x

TXĐ: D = R\{π/2 + kπ, k  Z}

Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = tan2016(-x) = (-tan x)2016 = tan2016x = g(x)  

Do đó: y tan2016là hàm chẵn trên tập xác định của nó.

+Xét hàm y = cot2x

f(-x) = cot(-2x) = - cot 2x = -f(x) nên đây là hàm số lẻ.

+ Xét hàm số  y = 1-sinx

f(-x) = 1- sin(-x) = 1+ sin x

Nên hàm số không chẵn không lẻ

24 tháng 11 2019

2 tháng 9 2018

Đáp án đúng : A

1 tháng 8 2019

đọc lại lý thuyết rồi làm 

5 tháng 1 2017

Đáp án B

- Hàm số xác định với mọi x ∈ R.

- Hàm số đã cho liên tục với mọi x ≠ 1.

- Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

- Để hàm số liên tục tại x= 1 khi và chỉ khi:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

- Vậy với a = 1 thì hàm số đã cho liên tục tại x = 1. Do đó, hàm số liên tục trên R.

9 tháng 1 2017

Đáp án A

(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f (x) liên tục tại điểm x = x 0  thì f(x) có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm f ( x ) = x  ta có D= R nên hàm số f(x) liên tục trên R.

Nhưng ta có  l i m x → 0 + f ( x ) - f ( 0 ) x - 0 = l i m x → 0 + x - 0 x - 0 = l i m x → 0 + x - 0 x - 0 = 1 l i m x → 0 - f ( x ) - f ( 0 ) x - 0 = l i m x → 0 - x - 0 x - 0 = l i m x → 0 - - x - 0 x - 0 = - 1

Nên hàm số không có đạo hàm tại x = 0.

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại  x = x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có f(x)  không liên tục tại  x = x 0  thì f(x) không có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.