K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

đề đúng ko v

17 tháng 2 2017

đúng đó bạn ạ

19 tháng 2 2017

Ta có:

\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)

\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow-6\le A\le6\) 

18 tháng 2 2017

min=-6 khi x=y=z=-2

max=6 khi x=y=z=2

gl !!

AH
Akai Haruma
Giáo viên
16 tháng 1 2017

Lời giải:

ĐKĐB \(\Leftrightarrow \frac{3x^2}{2}+y^2+yz+z^2=1\)

Áp dụng BĐT Am-Gm ta có \(yz\leq \left (\frac{y+z}{2}\right)^2\)

\(\Rightarrow 1=\frac{3x^2}{2}+y^2+yz+z^2=\frac{3x^2}{2}+(y+z)^2-yz\geq \frac{3x^2}{2}+\frac{3(y+z)^2}{4}\)

\(\Leftrightarrow \frac{2}{3}\geq x^2+\frac{(y+z)^2}{2}\)

Áp dụng BĐT Cauchy- Schwarz: \(3\left [x^2+\frac{(y+z)^2}{2}\right]=\left [x^2+\frac{(y+z)^2}{2}\right](1+2)\geq (x+y+z)^2\)

\(\Rightarrow 2\geq 3\left [x^2+\frac{(y+z)^2}{2}\right]\geq (x+y+z)^2\Rightarrow -\sqrt{2}\leq x+y+z\leq \sqrt{2}\)

Vậy

\(x+y+z (\max)=\sqrt{2}\Leftrightarrow (x,y,z)=\left (\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\right)\)

\(x+y+z(\min)=-\sqrt{2}\Leftrightarrow (x,y,z)=\left(\frac{-\sqrt{2}}{3},\frac{-\sqrt{2}}{3},\frac{-\sqrt{2}}{3}\right)\)

NV
21 tháng 11 2021

\(A=2\left(x^2+y^2\right)+\left(8y^2+\dfrac{1}{2}z^2\right)+\left(8x^2+\dfrac{1}{2}z^2\right)\ge2.2\sqrt{x^2y^2}+2\sqrt{8x^2.\dfrac{1}{2}z^2}+2.\sqrt{8x^2.\dfrac{1}{2}z^2}=4\left(xy+yz+zx\right)=4\)

\(A_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

21 tháng 11 2021

em cảm ơn thầy 

20 tháng 10 2018

Áp dung BĐT co- si, ta có:

\(y+z\le\sqrt{2\left(y^2+z^2\right)}\)

D đó:   \(\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

tương tự:   \(\frac{y^2}{z+x}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}},\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

\(\Rightarrow T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Đặt  :  \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{x^2+z^2}=c\left(a,b,c>0\right)\)

Khi đó:  \(T\ge\frac{1}{2\sqrt{2}}\left(\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}\right)\)

\(\Leftrightarrow T\ge\frac{1}{2\sqrt{2}}\left(\left(\frac{\left(a+c\right)^2}{2b}-b\right)+\left(\frac{\left(a+b\right)^2}{2c}-c\right)+\left(\frac{\left(b+c\right)^2}{2a}-a\right)\right)\)

\(\ge\frac{1}{2\sqrt{2}}\left(2\left(a+c\right)-3b+2\left(a+b\right)-3c+2\left(b+c\right)-3a\right)\)

\(\Rightarrow T\ge\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2}\sqrt{\frac{2017}{2}}\)

20 tháng 10 2018

Đặt xong thì suy ra:

\(x^2=\frac{a^2+c^2-b^2}{2}\)

\(y^2=\frac{a^2+b^2-c^2}{2}\)

\(z^2=\frac{b^2+c^2-a^2}{2}\)

Phần sau thì thay vào rồi phân h ra thôi