Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)
Càng đọc đề càng khó hiểu, ghi lại cho rõ hơn được không??
Dạng này chỉ cần thay x vào phương trình rồi giải phương trình tìm m là xong.
Bạn làm luôn thực hành đi :)
1. \(x^4-2x^3+3x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)
\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0
\(\Leftrightarrow\) x - 1 = 0 và x = 0
\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)
Vậy phương trình vô nghiệm.
2. \(\left(x^2-4\right)^2=8x+1\)
\(\Leftrightarrow x^4-8x^2+16=8x+1\)
\(\Leftrightarrow x^4-8x^2-8x+15=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) x - 3 = 0 \(\Leftrightarrow\) x = 3
3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)
Vậy tập nghiệm của pt là S = {1;3}.
a: =>3M+2x^4y^4=x^4y^4
=>3M=-x^4y^4
=>M=-1/3*x^4y^4
b: x^2-2M=3x^2
=>2M=-2x^2
=>M=-x^2
c: =>M=-x^2y^3-3x^2y^3=-4x^2y^3
d: =>M=7x^2y^2-3x^2y^2=4x^2y^2
Để phương trình đề cho có nghiệm $x=3$ thì $3(2.3+m)(3.3+2)-2(3.3+1)^2=4$ $\Leftrightarrow 162+36+27m+6m-2.100=4$
$\Leftrightarrow 33m=4+200-162-36$
$\Leftrightarrow 33m=6$
\(\Leftrightarrow m=\frac{6}{33}=\frac{2}{11}\)
KL: Vậy \(m=\frac{2}{11}\) thì thỏa ycbt