K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

câu này 4(x 2) x^2 2x=0

là (x-2) hay (x+2) a

20 tháng 12 2020

x+2

 

11 tháng 10 2015

a)<=>(x-4)(x-7)(x-5)(x-6)=1680

<=>(x2-11x+28)(x2-11x+30)=1680

đặt a=x2-11x+28 khi đó ptr trở thành :

a(a+2)=1680

=>a2+2a=1680

=>a2+2a+1=1681

=>(a+1)2=1681

=>a+1=41 hoặc a+1=-41

=>a=40 hoặc a=-42

=>x2-11x+28=40 hoặc -42

TH1:x2-11x+28=40

=>x2-11x+121/4-9/4=40

=>(x-11/2)2-9/4=40

=>(x-11/2)2=169/4

đến đây tự làm tiếp nhé

câu b thì nhóm x+2 với x-5 và x+3 với x-6 ,nhân vào phá ngoặc và đặt (như câu a) thôi

\(\left(x^2+5x\right)+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2+5x\right)-10\left(x^2+5x\right)+24=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(1-10\right)+14=0\)

\(\Leftrightarrow\left(-9\right)\left(x^2+5x\right)+14=0\)

\(\Leftrightarrow-9\left(x^2+5x\right)=-14\)

\(\Leftrightarrow x^2+5x=\frac{14}{9}\)

\(\Leftrightarrow x=0,2938.....\)

16 tháng 7 2016

b)     \(-2\left(x-1\right)^2=0\)    => x = 1

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

18 tháng 11 2015

A\(=\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)-1680\)

\(=\left(x^2-11x+28\right)\left(x^2-11x+30\right)-1680\)

Đặt \(\left(x^2-11x+28\right)=t\)

A\(=t\left(t+2\right)-1680=\left(t+1\right)^2-41^2=\left(t-40\right)\left(t+42\right)\)

Thay \(\left(x^2-11x+28\right)=t\)

A\(=\left(x^2-11x-12\right)\left(x^2-11x+70\right)=\left(x-12\right)\left(x+1\right)\left(x^2-11x+70\right)\)

1) Sửa đề: \(x^3-x^2+2=0\)

\(\Leftrightarrow x^3+x^2-2x^2-2x+2x+2=0\)

\(\Leftrightarrow x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+2\right)=0\)(1)

Ta có: \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra \(x+1=0\)

hay x=-1

Vậy: x=-1

2) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

3) Ta có: \(x^4+6x^2+8=0\)

\(\Leftrightarrow x^4+4x^2+2x^2+8=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)+2\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2+2\right)=0\)(3)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+4\ge4\ne0\forall x\)(4)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(5)

Từ (3), (4) và (5) suy ra phương trình \(x^4+6x^2+8=0\) vô nghiệm

Vậy: x∈∅

4) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3+5x^2-6x^2-30x+9x+45=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

Vậy: x∈{-5;3}