Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3+3x^2-7x^2-21x+9x+27=0
x^2(x+3)-7x(x+3)+9(x+3)=0
(x+3)(x^2-7x+9)=0
x = -3 hoặc x^2 - 7x + 9 = 0 (chuyển về pt dạng kx^2 + m)
Bạn chuyển 7x = 2 . x . 7/2 + 49/4 - 49/4
c \(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{3\left(x-2\right)\left(x^2-9\right)}\)
\(=\frac{2\left(x-2\right)\left(x-3\right)}{3\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
d, \(\frac{x^2+5x+6}{x^2+4x+4}=\frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\frac{x+3}{x+2}\)
Tương tự với a ; b
a)\(4x^2-4x+4=0\Leftrightarrow\left(2x-1\right)^2+3\) (đến đây hết pt dc rùi)
b)\(x^3-27=\left(x-3\right)\left(x^2+3x+9\right)\)
c)\(x^3-4x^2+3x=x^3-x^2-3x^2+3x\)
=\(x^2\left(x-1\right)-3x\left(x-1\right)\)
=\(x\left(x-3\right)\left(x-1\right)\)
d)\(4x^2-12x+3=\left(2x-3\right)^2-6\)
=\(\left(2x-3\right)^2-\sqrt{6^2}\)
=\(\left(2x-3-\sqrt{6}\right)\left(2x-3+\sqrt{6}\right)\)
\(a,4x^2-4x+4=4\left(x^2-x+1\right)\)
\(b,x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)
\(c,x^3-4x^2+3x=x\left(x^2-4x+3\right)\)
\(=x\left[\left(x^2-x\right)-\left(3x-3\right)\right]\)
\(=x\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x-3\right)\)
\(d,4x^2-12x+3=4\left(x^2-3x+\frac{3}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+\frac{3}{4}\right)\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\frac{3}{2}\right]\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2\right]\)
\(=4\left(x-\frac{3}{2}-\frac{\sqrt{3}}{\sqrt{2}}\right)\left(x-\frac{3}{2}+\frac{\sqrt{3}}{\sqrt{2}}\right)\)
\(=4\left(x-\frac{3+\sqrt{6}}{2}\right)\left(x-\frac{3-\sqrt{6}}{2}\right)\)
P/s: Dương: câu d t k chắc nx, sai thì thông cảm :)) -Huyền Nhi-
\(=x^3+3x^2-7x^2-21x+9x+27=\left(x+3\right)\left(x^2-7x+9\right)\)
a) `x^4+2x^3-4x-4`
`=(x^4-4)+(2x^3-4x)`
`=(x^2-2)(x^2+2)+2x(x^2-2)`
`=(x^2-2)(x^2+2+2x)`
b) `x^3-4x^2+12x-27`
`=(x^3-27)-(4x^2-12x)`
`=(x-3)(x^2+3x+9)-4x(x-3)`
`=(x-3)(x^2+3x+9-4x)`
`=(x-3)(x^2-x+9)`
c) `xy-4y-5x+20`
`=y(x-4)-5(x-4)`
`=(y-5)(x-4)`
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) Ta có: \(xy-4y-5x+20\)
\(=y\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)+\left(-4x^2+12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-4x\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
x^3+3x^2-7x^2-21x+9x+27=0
x^2(x+3)-7x(x+3)+9(x+3)=0
(x+3)(x^2-7x+9)=0
x = -3 hoặc x^2 - 7x + 9 = 0 (chuyển về pt dạng kx^2 + m)