Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x:2=y:3->x/2=y/3
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
x/2=y/3=x+y/2+3=10/5=2
từ: x/2=2->x=2.2=4
y/3=2->y=2.3=6
vậy...
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\) (theo tính chất củadãy tỉ số bằng nhau)
\(\Rightarrow x=4,y=6\)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{2}{5}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Leftrightarrow x=2k;y=5k\)
\(xy=70\Leftrightarrow10k^2=70\Leftrightarrow k^2=7\\ \Leftrightarrow\left[{}\begin{matrix}k=\sqrt{7}\\k=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{7};y=5\sqrt{7}\\x=-2\sqrt{7};y=-5\sqrt{7}\end{matrix}\right.\)
1,x/2-y/3=x*y/2*3=54/6=9
x=2*3=6
y=3*3=9
2,x/5=y/3,x^2-y^2=4
x^2-y^2=2^2
=>x-y=2
x-y/5-3=2/2=1
x=5*1=5
y=3*1=3
Câu b
Áp dụng dãy tính chất tỉ số bằng nhau:
X/5=y/3=x^2-y^2/5^2-3^2=4/16=0,25
X/5=0,25==>X=0,25x5=1,25
Y/3=0,25==>y=0,25x3=0,75
Theo mình là giải như thế
Vậy X=1,25 và y=0,75
1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)
2) Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)
3) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k.\)
Thay x = 2k và y = 3k vào x.y = 6
=> 2k. 3k = 6
=> 6.k2 = 6
=> k2 = 1 => k = 1 hoặc k = -1
Nếu k = 1
=>x = 2 . 1 = 2
y = 3. 1= 3
Nếu k = -1
=> x = 2 . -1 = -2
y = 3 . -1 = -1
đặt x/2=y/5=k
=>x=2k;y=5k
theo đề :
x.y=10
=>2k.5k=10
10k2=10
k2=1
k=-1 hoặc 1
với k=1 thì x=2.k=2.1=2
y=5.k=5.1=5
với k=-1 thì x=2.k=2.(-1)=-2
y=5.k=5.(-1)=-5
vậy x=2;y=5 hoặc x=-2;y=-5