K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x^2+y^2)(3^2+4^2)\geq (3x+4y)^2\)

\(\Leftrightarrow 3^2+4^2\geq (3x+4y)^2\)

\(\Leftrightarrow 25\geq (3x+4y)^2\)

\(\Leftrightarrow -5\leq 3x+4y\leq 5\)

Dấu bằng xảy ra khi \(\frac{x}{3}=\frac{y}{4}\). Kết hợp với \(x^2+y^2=1\Rightarrow (x,y)=\left(\frac{3}{5};\frac{4}{5}\right); \left(\frac{-3}{5};\frac{-4}{5}\right)\)

12 tháng 11 2017

Tks

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

\((3x+4\sqrt{1-x^2})^2\leq (3^2+4^2)[x^2+(1-x^2)]\)

\(\Leftrightarrow (3x+4\sqrt{1-x^2})^2\leq 3^2+4^2=25\)

\(\Rightarrow -\sqrt{25}\leq 3x+4\sqrt{1-x^2}\leq \sqrt{25}\)

hay \(-5\leq 3x+4\sqrt{1-x^2}\leq 5\) (đpcm)

7 tháng 1 2020

Theo C-S:

\(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)

\(\le\sqrt{\left(1-y^2+y^2\right)\left(1-x^2+x^2\right)}=1\)

Lại có \(3x+4y\le\sqrt{\left(x^2+y^2\right)\left(3^2+4^2\right)}\le\sqrt{5^2}=5\)

NV
13 tháng 11 2019

Do \(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)+xyz\ge0\)

\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz+xyz\ge0\)

\(\Leftrightarrow xy+yz+zx\ge2\)

Mặt khác \(x+y+z=3\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\le5\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

9 tháng 1 2020

Áp dụng BĐT Bunhiacốpski, ta có:

\(\left|x-y\right|=\left|x.1+2y.\left(-\frac{1}{2}\right)\right|\le\sqrt{\left(x^2+4y^2\right)\left(1+\frac{1}{4}\right)}=\frac{\sqrt{5}}{2}\)\(x^2+4y^2=1\)

13 tháng 12 2019

Theo Bunhiacopski ta luôn có:

\(\left(x-y\right)^2=\left[1\cdot x+\left(-\frac{1}{2}\right)\cdot2y\right]^2\le\left(1^2+\frac{1}{4}\right)\left(x^2+4y^2\right)=\frac{5}{2}\)

\(\Rightarrow\left|x-y\right|\le\frac{\sqrt{5}}{2}\left(đpcm\right)\)

15 tháng 10 2020

\(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}< =5\)

\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{\left(2x+2\right)y}< =5\)

\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)

Áp dụng bất đẳng thức cauchy ta được :

\(\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =\frac{x+y+4}{2}+\frac{2y+x+1}{2}\)

\(=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

\(=>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)

Vậy ta có điều cần phải chứng minh