Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
\((3x+4\sqrt{1-x^2})^2\leq (3^2+4^2)[x^2+(1-x^2)]\)
\(\Leftrightarrow (3x+4\sqrt{1-x^2})^2\leq 3^2+4^2=25\)
\(\Rightarrow -\sqrt{25}\leq 3x+4\sqrt{1-x^2}\leq \sqrt{25}\)
hay \(-5\leq 3x+4\sqrt{1-x^2}\leq 5\) (đpcm)
Theo C-S:
\(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
\(\le\sqrt{\left(1-y^2+y^2\right)\left(1-x^2+x^2\right)}=1\)
Lại có \(3x+4y\le\sqrt{\left(x^2+y^2\right)\left(3^2+4^2\right)}\le\sqrt{5^2}=5\)
Do \(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)+xyz\ge0\)
\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz+xyz\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\)
Mặt khác \(x+y+z=3\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\le5\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị
Áp dụng BĐT Bunhiacốpski, ta có:
\(\left|x-y\right|=\left|x.1+2y.\left(-\frac{1}{2}\right)\right|\le\sqrt{\left(x^2+4y^2\right)\left(1+\frac{1}{4}\right)}=\frac{\sqrt{5}}{2}\) vì \(x^2+4y^2=1\)
Theo Bunhiacopski ta luôn có:
\(\left(x-y\right)^2=\left[1\cdot x+\left(-\frac{1}{2}\right)\cdot2y\right]^2\le\left(1^2+\frac{1}{4}\right)\left(x^2+4y^2\right)=\frac{5}{2}\)
\(\Rightarrow\left|x-y\right|\le\frac{\sqrt{5}}{2}\left(đpcm\right)\)
\(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}< =5\)
\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{\left(2x+2\right)y}< =5\)
\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)
Áp dụng bất đẳng thức cauchy ta được :
\(\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =\frac{x+y+4}{2}+\frac{2y+x+1}{2}\)
\(=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)
\(=>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)
Vậy ta có điều cần phải chứng minh
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((x^2+y^2)(3^2+4^2)\geq (3x+4y)^2\)
\(\Leftrightarrow 3^2+4^2\geq (3x+4y)^2\)
\(\Leftrightarrow 25\geq (3x+4y)^2\)
\(\Leftrightarrow -5\leq 3x+4y\leq 5\)
Dấu bằng xảy ra khi \(\frac{x}{3}=\frac{y}{4}\). Kết hợp với \(x^2+y^2=1\Rightarrow (x,y)=\left(\frac{3}{5};\frac{4}{5}\right); \left(\frac{-3}{5};\frac{-4}{5}\right)\)
Tks