K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2021

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

18 tháng 10 2021

x,y thuộc N ôk

10 tháng 9 2021

làm r mà bạn ei

10 tháng 9 2021

Chưa mà bạn

9 tháng 12 2016

Áp dụng BĐT Bunhiacopxki : 

\(\left(x.\sqrt{1-y^2}+\sqrt{1-x^2}.y\right)^2\le\left(x^2+1-x^2\right).\left(y^2+1-y^2\right)\)

\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}\le1\Rightarrow x^2+y^2\le1\)

Lại áp dụng BĐT Bunhiacopxki : \(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\le\left(3^2+4^2\right)\)

\(\Rightarrow\left(3x+4y\right)^2\le25\Rightarrow3x+4y\le5\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$

$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$

$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$

$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$

$\Leftrightarrow 4Q=3$

$\Leftrightarrow Q=\frac{3}{4}$ 

 

7 tháng 1 2020

Theo C-S:

\(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)

\(\le\sqrt{\left(1-y^2+y^2\right)\left(1-x^2+x^2\right)}=1\)

Lại có \(3x+4y\le\sqrt{\left(x^2+y^2\right)\left(3^2+4^2\right)}\le\sqrt{5^2}=5\)