Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\sqrt{x+2022}-\sqrt{y+2022}\right)+\left(x^3-y^3\right)=0\)
=>\(\dfrac{x-y}{\sqrt{x+2022}+\sqrt{y+2022}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
=>x-y=0
=>x=y
P=2x^2-5x^2+x^2+12x+2023
=-2x^2+12x+2023
=-2(x^2-6x-2023/2)
=-2(x^2-6x+9-2041/2)
=-2(x-3)^2+2041<=2041
Dấu = xảy ra khi x=3
1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1).
Nên từ (1) ta có:
(xy-1) chia hết (x2+1)
=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y)
Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z.
Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1
=> 3 \(\ge\) y => y \(\in\) {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y)
Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)
\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)