Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT bunyakovsky:
\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))
Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)
DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)
Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)
ta có:x+y+z=0⇒x+y=-z⇔(x+y)2=z2⇔x2+2xy+y2-z2=0
⇒x2+y2-z2=-2xy(1)
CMTT:⇒y2+z2-x2=-2yz(2) và z2+x2-y2=-2xz(3)
Thay (1)(2)(3) vào B,ta có.B=-(2xy.2yz.2xz)/16xyz=-xyz/2
1+x+x^2+x^3=(x+1)+x^2(x+1)=(x+1)(x^2+1)=y^2
với x=-1 có y=0 với x khác -1
có (x^2+1;x+1)=2=> do VP CP =>có hai trường hợp xẩy ra
TH1: \(\left(I\right)\left\{\begin{matrix}x+1=k^2\\x^2+1=t^2\end{matrix}\right.\)=> x=0 duy nhất => y=+-1
TH2: \(x^2+1=\left(x+1\right)\Leftrightarrow x^2-x=0=>x=0,1\)=>y=+-2
Kết luận: (x,y)=(-1,0);(0,+-1);(1,+-2)
a