Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x^4+x+1=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
\(x\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x=0\) hay \(x+3=0\) hay \(x^2+1=0\) (pt vô nghiệm vì \(x^2+1\ge1\))
\(\Leftrightarrow x=0\) hay \(x=-3\)
-Vậy \(S= \left\{0;-3\right\}\)
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}
Câu 1. thiếu đề đó bạn ạ
Câu 2:
Ta có: x^3+15x^2+74x+120
=(x^3+4x^2) + (11x^2+44x) + (30x+120)
=(x+4)(x^2+11x+30)
=(x+4)(x+5)(x+6)
Ta có bảng xét dấu
x | -6 | -5 | -4 | ||||
x+4 | - | | | - | | | - | | | + |
x+5 | - | | | - | | | + | | | + |
x+6 | - | | | + | | | + | | | + |
Để (x+4)(x+5)(x+6)<0
Khi có chỉ 1 số âm hoặc cả 3 số âm
<=> x<-6 hoặc -5<x<-4
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
\(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(< =>\left(x^2-9\right)^2-\left[3\left(x-3\right)\right]^2=0\)
\(< =>\left(x^2-9\right)^2-\left(3x-9\right)^2=0\)
\(< =>\left(x^2-9+3x-9\right)\left(x^2-9-3x+9\right)=0\)
\(< =>\left(x^2+3x-18\right)\left(x^2-3x\right)=0\)
\(=>\left[{}\begin{matrix}x^2+3x-18=0\\x^2-3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x+6\right)\left(x-3\right)=0\\x\left(x-3\right)=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=-6\\x=3\\x=0\end{matrix}\right.\)
b) x^2 - x + 1/4 = 0
<=> x^2 - 2.1/2.x + (1/2)^2 = 0
<=> (x - 1/2)^2 = 0
<=> x - 1/2 = 0
<=> x = 1/2
x^2 - x + 1/4 = 0
<=> x^2 - 2.1/2.x + (1/2)^2 = 0
<=> (x - 1/2)^2 = 0
<=> x - 1/2 = 0
<=> x = 1/2
chúc bn hc tốt