Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
ĐKXĐ: \(x\ne\pm\frac{3}{2}\)
\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)
\(\left(3x-2\right)^2-9\left(x-1\right)\left(x+1\right)+12x\)
\(=9x^2-6x+4-9\left(x^2-1\right)+12x\)
\(=9x^2-6x+4-9x^2+9+12x\)
\(=6x+13\)
Chúc bạn học tốt
\((3x-2)^2 - 9(x-1)(x+1) + 12x \)
\(= [(3x)^2 - 2.3x.(-2)+ (-2)^2]-9.x^2-1^2+12x\)
\(=9x^2-12x+(-2)^2-9x^2-1x^2+12x\)
\(=9x^2-9x^2-12x+12x+(-2)^2-1x^2\)
\(=(-2)^2-1x^2\)
Mình không biết có đúng hay ko nên mong bạn đừng trách mình nhé! (Bởi vì mình cũng không có giỏi toán cho lắm)
6, \(x^2-1+2xy+y^2=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)
7, \(4x^2-12x+9-y^2=\left(2x-3\right)^2-y^2=\left(2x-3-y\right)\left(2x-3+y\right)\)
8, \(16x^2-4y^2+4y-1=16x^2-\left(2y-1\right)^2=\left(4x-2y+1\right)\left(4x+2y-1\right)\)
9, \(25-x^2-12x-36=25-\left(x+6\right)^2=\left(5-x-6\right)\left(5+x+5\right)=-\left(x+1\right)\left(x+10\right)\)
10, \(x^2-9-5\left(x+3\right)=\left(x-3\right)\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-8\right)\)
7, 4x mũ 2 - 12x + 9 - y mũ 2 = -(y-2x+3) (y+2x-3)
8, 16x mũ 2 - 4y mũ 2 + 4y - 1 = -(2y - 4x - 1) (2y+4x-1)
9, 25 - x mũ 2 - 12x - 36 = -(x+1) (x+11)
10, x mũ 2 - 9 - 5 ( x + 3 ) = (x-8) (x+3)
bạn k cho mình nha
chúc bạn học tốt :))))
bạn kham khảo link, mình đã làm rồi nhé
Câu hỏi của Phạm Đỗ Bảo Ngọc - Toán lớp 8 - Học trực tuyến OLM
Ta có: \(\left(x^2-9\right)^2=12x+1\)
\(\Leftrightarrow x^4-18x^2+81-12x-1=0\)
\(\Leftrightarrow x^4-18x^2-12x+80=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)(1)
Ta có: \(x^2+6x+10=\left(x^2+6x+9\right)+1=\left(x+3\right)^2+1\)
Lại có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\ne0\forall x\)(2)
Từ (1) và (2) suy ra
\(\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{2;4\right\}\)